发一篇不需要O2就能过的分块。

基本思路:

分块的思路,大段维护,小段朴素。

维护几个数组:

  • 区块\(block[maxn]\)
  • 懒标记\(tag[maxn]\)
  • 真实数据\(data[maxn]\)。

更新时

假设我们涉及到的区块的编号区间是\([lb,rb]\),真实数据范围为\([l,r]\)。

那么,我们在区块的\([lb+1,rb-1]\)区间,给\(block[i]\)加上\(\Delta k\) 并且打上懒标记 \(=\Delta k\)。在真实数据的\([l,lb\times N]\)和\([rb\times N-N+1,r]\)区间的每个\(data[i]\)加上\(\Delta k\)。

查询时

同样的,对于区块区间\([lb+1,rb-1]\)直接累加就好,对于\(l b\)区间和\(rb\)区间单独处理即可。

上丑陋无比的代码。注意特判\(l\)和\(r\)在一个区块区间的情况。

#include<bits/stdc++.h>
using namespace std;
template< class ccf >inline ccf qr(ccf a) {
char c=getchar();
ccf x=0;
int q=1;
while(c<48||c>57)
q=c==45?-1:q,c=getchar();
while(c>=48&&c<=57)
x=x*10+c-48,c=getchar();
return q==-1?-x:x;
}
const int maxn=100055;
typedef long long ll;
ll data[maxn];
ll tag[maxn];
ll blk[maxn];
int n;
int m;
int N;
int adj;
#define RP(t,a,b) for(register int t=(a),edd=(b);t<=edd;t++)
int t1,t2;
ll t3;
int temp; void add(int l,int r,ll k) {
int lb=(l+N-1)/N;
int rb=(r+N-1)/N;
if(lb!=rb) { RP(t,l,N*lb)
data[t]+=k,blk[lb]+=k;
RP(t,N*rb-N+1,r)
data[t]+=k,blk[rb]+=k;
RP(t,lb+1,rb-1)
tag[t]+=k,blk[t]+=N*k;
} else
RP(t,l,r)
data[t]+=k,blk[t]+=k;
} ll sum(int l,int r) {
ll ret=0;
int lb=(l+N-1)/N;
int rb=(r+N-1)/N;
RP(t,lb+1,rb-1)
ret+=blk[t];
if(tag[lb])
RP(t,N*lb-N+1,N*lb)
data[t]+=tag[lb];
tag[lb]=0;
if(tag[rb])
RP(t,N*rb-N+1,min(N*rb,n))
data[t]+=tag[rb];
tag[rb]=0;
if(lb!=rb) {
RP(t,l,N*lb)
ret+=data[t];
RP(t,N*rb-N+1,r)
ret+=data[t];
} else
RP(t,l,r)
ret+=data[t];
return ret;
} int main() {
#ifndef ONLINE_JUDGE
freopen("in.in","r",stdin);
freopen("out.out","w",stdout);
#endif
n=qr(1);
m=qr(1);
RP(t,1,n)
data[t]=qr(1ll);
N=sqrt(n);
RP(t,1,n/N)
RP(i,1,N)
blk[t]+=data[(t-1)*N+i];
RP(t,1,n%N)
blk[n/N+1]+=data[(n/N)*N+t];
RP(t,1,m) {
temp=qr(1);
if(temp==1) {
t1=qr(1);
t2=qr(1);
t3=qr(1ll);
add(t1,t2,t3);
} else {
t1=qr(1);
t2=qr(1);
printf("%ld\n",sum(t1,t2));
}
}
return 0;
}

题解 P3372 【【模板】线段树 1】的更多相关文章

  1. hdu 1754 I Hate It (模板线段树)

    http://acm.hdu.edu.cn/showproblem.php?pid=1754 I Hate It Time Limit: 9000/3000 MS (Java/Others)    M ...

  2. 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)

    To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...

  3. 【线段树】【P3372】模板-线段树

    百度百科 Definition&Solution 线段树是一种log级别的树形结构,可以处理区间修改以及区间查询问题.期望情况下,复杂度为O(nlogn). 核心思想见百度百科,线段树即将每个 ...

  4. hdu3966 树链剖分点权模板+线段树区间更新/树状数组区间更新单点查询

    点权树的模板题,另外发现树状数组也是可以区间更新的.. 注意在对链进行操作时方向不要搞错 线段树版本 #include<bits/stdc++.h> using namespace std ...

  5. [NOIP10.6模拟赛]2.equation题解--DFS序+线段树

    题目链接: 咕 闲扯: 终于在集训中敲出正解(虽然与正解不完全相同),开心QAQ 首先比较巧,这题是\(Ebola\)出的一场模拟赛的一道题的树上强化版,当时还口胡出了那题的题解 然而考场上只得了86 ...

  6. 算法模板——线段树6(二维线段树:区域加法+区域求和)(求助phile)

    实现功能——对于一个N×M的方格,1:输入一个区域,将此区域全部值作加法:2:输入一个区域,求此区域全部值的和 其实和一维线段树同理,只是不知道为什么速度比想象的慢那么多,求解释...@acphile ...

  7. 【题解】Journeys(线段树优化连边)

    [#3073. Pa2011]Journeys (线段树优化连边) 这张图太直观了,直接讲透了线段树优化连边的原理和正确性. 考虑建立两颗线段树,一颗是外向树,一颗是内向树,相当于网络流建模一样,我们 ...

  8. Gorgeous Sequence 题解 (小清新线段树)

    这道题被学长称为“科幻题” 题面 事实上,并不是做法科幻,而是“为什么能这么做?”的解释非常科幻 换句话说,复杂度分析灰常诡异以至于吉如一大佬当场吃书 线段树维护的量:区间和sum,区间最大值max1 ...

  9. 洛谷题解P4314CPU监控--线段树

    题目链接 https://www.luogu.org/problemnew/show/P4314 https://www.lydsy.com/JudgeOnline/problem.php?id=30 ...

  10. [NOI2016]区间 题解(决策单调性+线段树优化)

    4653: [Noi2016]区间 Time Limit: 60 Sec  Memory Limit: 256 MBSubmit: 1593  Solved: 869[Submit][Status][ ...

随机推荐

  1. HNOI 2006 BZOJ 1195 最短母串

    题面 问题描述 给定n个字符串(S1,S2,„,Sn),要求找到一个最短的字符串T,使得这n个字符串(S1,S2,„,Sn)都是T的子串. 输入 第一行是一个正整数n(n<=12),表示给定的字 ...

  2. - > 动规讲解基础讲解六——编辑距离问题

    给定两个字符串S和T,对于T我们允许三种操作: (1) 在任意位置添加任意字符(2) 删除存在的任意字符(3) 修改任意字符 问最少操作多少次可以把字符串T变成S?  例如: S=  “ABCF”   ...

  3. Maven出现错误No plugin found for prefix 'jetty' in the current project and in the plugin groups的问题解决

    只需在maven的setting.xml文件上加入如下节点: <pluginGroups> <pluginGroup>org.mortbay.jetty</pluginG ...

  4. 给控件做数字签名之一:将控件打包为Web发布包 [转]

    微软代码签名证书使用指南 http://www.wotrust.com/support/signcode_guide.htm 签名重要性:http://www.wotrust.com/FAQ/whyS ...

  5. Octave入门基础

    Octave入门基础 一.简单介绍 1.1 Octave是什么? Octave是一款用于数值计算和画图的开源软件.和Matlab一样,Octave 尤其精于矩阵运算:求解联立方程组.计算矩阵特征值和特 ...

  6. scramble-string——两个字符串经过树化并旋转后是否一致、递归、动态规划

    Given a string s1, we may represent it as a binary tree by partitioning it to two non-empty substrin ...

  7. apue学习笔记(第十三章 守护进程)

    本章将说明守护进程结构,以及如何编写守护进程程序. 守护进程,也就是通常说的Daemon进程,是Unix中的后台服务进程.它是一个生存期较长的进程,通常独立于控制终端并且周期性地执行某种任务或等待处理 ...

  8. hdu5417(BC)

    题目链接:点这儿 Victor and Machine Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/65536 K ( ...

  9. Android VS IOS

    时间: IOS:var d = new Date("2018-04-19 14:23:00".replace(/-/g, "/")); (d = new Dat ...

  10. python判断字符串类型

    s为字符串 s.isalnum() 所有字符都是数字或者字母,为真返回 Ture,否则返回 False.(重点,这是字母数字一起判断的!!) s.isalpha() 所有字符都是字母,为真返回 Tur ...