题目链接  Codeforces_Gym_101177

Problem A  Anticlockwise Motion

直接模拟即可

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<algorithm>
#include<cstring>
#include<string>
#include<vector>
#include<map>
#include<set>
#include<queue>
using namespace std;
int a,b;
pair<int,int> p1,p2;
pair<int,int> calc(int x)
{
pair<int,int> ans;
int y=sqrt(x*1.0);
if ((y&1)&&(y*y==x))
{
ans.first=ans.second=(-(y-1)>>1);
return ans;
}
if ((y&1)==0) y--;
int p=y*y;
ans.first=ans.second=(-(y-1)>>1);
if (x-p<=(y+1))
{
ans.second--;
ans.first+=(x-p)-1;
return ans;
}
p+=(y+1);
ans.first+=y;
ans.second--;
if (x-p<=y+1)
{
ans.second+=(x-p);
return ans;
}
ans.second+=(y+1);
p+=(y+1);
if (x-p<=y+1)
{
ans.first-=(x-p);
return ans;
}
ans.first-=(y+1);
p+=y+1;
ans.second-=(x-p);
return ans;
}
int main()
{
scanf("%d%d",&a,&b);
p1=calc(a);
p2=calc(b); printf("%d\n",abs(p1.first-p2.first)+abs(p1.second-p2.second));
return 0;
}

Problem D Dendroctonus

非正解

任意选取三个点确定一个圆然后判断。

但是这样有特殊情况……如果两个点和另一个很远的点构成一个很大的圆,

这个圆可能恰好符合题意。

所以我们再加入8个坐标足够大的点再枚举判断就可以了。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<algorithm>
#include<cstring>
#include<string>
#include<vector>
#include<map>
#include<set>
#include<queue>
using namespace std;
#define y1 khjk
#define y2 kjkj
struct point
{
double x,y;
point(){}
point(double _x,double _y):x(_x),y(_y)
{}
point operator -(const point &b) const
{
return point(x-b.x,y-b.y);
}
double operator *(const point &b) const
{
return x*b.x+y*b.y;
}
double operator ^(const point &b) const
{
return x*b.y-y*b.x;
}
};
struct line
{
point s,e;
double a,b,c;
line()
{ }
line (point _s,point _e):s(_s),e(_e)
{
a=e.y-s.y;
b=s.x-e.x;
c=e.x*s.y-s.x*e.y;
}
};
double xmult(point p0,point p1,point p2)
{
return (p1-p0)^(p2-p0);
}
const double eps = 1e-1;
double sgn(double x)
{
if(fabs(x) < eps)return 0;
if(x < 0)return -1;
else return 1;
}
bool inter(line l1,line l2)
{
return
max(l1.s.x,l1.e.x) >= min(l2.s.x,l2.e.x) &&
max(l2.s.x,l2.e.x) >= min(l1.s.x,l1.e.x) &&
max(l1.s.y,l1.e.y) >= min(l2.s.y,l2.e.y) &&
max(l2.s.y,l2.e.y) >= min(l1.s.y,l1.e.y) &&
sgn((l2.s-l1.s)^(l1.e-l1.s))*sgn((l2.e-l1.s)^(l1.e-l1.s)) <= 0 &&
sgn((l1.s-l2.s)^(l2.e-l2.s))*sgn((l1.e-l2.s)^(l2.e-l2.s)) <= 0;
}
bool samepoint(point p1,point p2)
{
if (fabs(p1.x-p2.x)>eps) return false;
if (fabs(p1.y-p2.y)>eps) return false;
return true;
}
double cross(point sp,point ep,point op)
{
return (sp.x-op.x)*(ep.y-op.y)-(sp.y-op.y)*(ep.x-op.x);
}
double area(point p1,point p2,point p3)
{
return fabs(cross(p1,p2,p3))/2;
}
point intersection(line u,line v)
{
point p;
p.x=(cross(v.e,u.e,u.s)*v.s.x-cross(v.s,u.e,u.s)*v.e.x)/(cross(v.e,u.e,u.s)-cross(v.s,u.e,u.s));
p.y=(cross(v.e,u.e,u.s)*v.s.y-cross(v.s,u.e,u.s)*v.e.y)/(cross(v.e,u.e,u.s)-cross(v.s,u.e,u.s));
return p;
}
point interpoint(line l1, line l2)
{
point tmp;
if(fabs(l1.b)<eps)
{
tmp.x=-l1.c/l1.a;
tmp.y=(-l2.c-l2.a*tmp.x)/l2.b;
}
else
{
tmp.x=(l1.c*l2.b-l1.b*l2.c)/(l1.b*l2.a-l2.b*l1.a);
tmp.y=(-l1.c-l1.a*tmp.x)/l1.b;
}
return tmp;
}
double findx(double y,line l)
{
return (-l.c-l.b*y)/l.a;
}
double findy(double x,line l)
{
if (fabs(l.b)<eps)
return -1e250;
return (-l.c-l.a*x)/l.b;
}
point tcircle(point pt1, point pt2, point pt3, double &radius)
{
double x1 = pt1.x, x2 = pt2.x, x3 = pt3.x;
double y1 = pt1.y, y2 = pt2.y, y3 = pt3.y;
double a = x1 - x2;
double b = y1 - y2;
double c = x1 - x3;
double d = y1 - y3;
double e = ((x1 * x1 - x2 * x2) + (y1 * y1 - y2 * y2)) / 2.0;
double f = ((x1 * x1 - x3 * x3) + (y1 * y1 - y3 * y3)) / 2.0;
double det = b * c - a * d;
if( fabs(det) <eps)
{
radius = -1;
return point(0,0);
} double x0 = -(d * e - b * f) / det;
double y0 = -(a * f - c * e) / det;
radius = hypot(x1 - x0, y1 - y0);
return point(x0, y0);
}
int n,cnt1=0,cnt2=0;
point p1[1100],p2[1100];
double dis(point p1,point p2)
{
return sqrt((p2.x-p1.x)*(p2.x-p1.x)+(p2.y-p1.y)*(p2.y-p1.y));
}
void calc(point P,point Q)
{
double r=dis(P,Q)/2;
point p;
p.x=(P.x+Q.x)/2;
p.y=(P.y+Q.y)/2;
bool can=true;
int l;
for (l=1;l<=cnt1;l++)
if ((p1[l].x-p.x)*(p1[l].x-p.x)+(p1[l].y-p.y)*(p1[l].y-p.y)-r*r>eps)
{
can=false;
break;
}
if (!can) return;
for (l=1;l<=cnt2;l++)
if (r*r-(p2[l].x-p.x)*(p2[l].x-p.x)-(p2[l].y-p.y)*(p2[l].y-p.y)>eps)
{
can=false;
break;
}
if (can)
{
puts("No");
exit(0);
} }
bool onSegment(point Pi , point Pj , point Q)
{
if((Q.x - Pi.x) * (Pj.y - Pi.y) == (Pj.x - Pi.x) * (Q.y - Pi.y)
&& min(Pi.x , Pj.x) <= Q.x && Q.x <= max(Pi.x , Pj.x)
&& min(Pi.y , Pj.y) <= Q.y && Q.y <= max(Pi.y , Pj.y))
return true;
else
return false;
}
int main()
{
scanf("%d",&n);
int i,j,k,l;
for (i=1;i<=n;i++)
{
point p;
scanf("%lf%lf",&p.x,&p.y);
char c[3];
scanf("%s",c);
if (c[0]=='I')
p1[++cnt1]=p;
else p2[++cnt2]=p;
}
if (cnt1<=1)
{
puts("No");
return 0;
}
else if (cnt1==2)
{
calc(p1[1],p1[2]);
bool can=true;
for (i=1;i<=cnt2;i++)
if (onSegment(p1[1],p1[2],p2[i]))
{
can=false;
break;
}
if (can)
puts("No");
else puts("Yes");
return 0;
}
int cnt3=cnt1; cnt3++;
p1[cnt3].x=10000;
p1[cnt3].y=10000;
cnt3++;
p1[cnt3].x=-10000;
p1[cnt3].y=10000;
cnt3++;
p1[cnt3].x=10000;
p1[cnt3].y=-10000;
cnt3++;
p1[cnt3].x=-10000;
p1[cnt3].y=-10000;
cnt3++;
p1[cnt3].x=0;
p1[cnt3].y=-10000;
cnt3++;
p1[cnt3].x=0;
p1[cnt3].y=10000;
cnt3++;
p1[cnt3].x=10000;
p1[cnt3].y=0;
cnt3++;
p1[cnt3].x=-10000;
p1[cnt3].y=-0; for (i=1;i<=cnt3-2;i++)
for (j=i+1;j<=cnt3-1;j++)
for (k=j+1;k<=cnt3;k++)
{
double r;
point p=tcircle(p1[i],p1[j],p1[k],r);
if (r==-1)
{
calc(p1[i],p1[j]);
calc(p1[i],p1[k]);
calc(p1[j],p1[k]);
continue;
}
if (r!=-1)
{
bool can=true;
for (l=1;l<=cnt1;l++)
if ((p1[l].x-p.x)*(p1[l].x-p.x)+(p1[l].y-p.y)*(p1[l].y-p.y)-r*r>eps)
{
can=false;
break;
}
if (!can) continue;
for (l=1;l<=cnt2;l++)
if (r*r-(p2[l].x-p.x)*(p2[l].x-p.x)-(p2[l].y-p.y)*(p2[l].y-p.y)>eps)
{
can=false;
break;
}
if (can)
{
puts("No");
return 0;
}
} }
puts("Yes");
return 0;
}

Problem E

Problem F

其实这题就是预处理+判断

总状态数不超过3^9个

对于题目中所给的4张表,我们搞出所有的状态

然后暴力判断即可。

#include <bits/stdc++.h>

using namespace std;

#define rep(i, a, b)	for (int i(a); i <= (b); ++i)
#define dec(i, a, b) for (int i(a); i >= (b); --i) typedef long long LL; const int N = 2e4 + 10;
const char* ch = " FUT"; int an[6][6], oo[6][6], im[6][6], eq[6][6];
int mul[6][6];
int f[N][4][4];
int cnt;
int c[6][6];
int ct;
int T; set <int> mp; void init(){
int s = 1;
rep(i, 1, 3){
rep(j, 1, 3){
mul[i][j] = s;
s *= 10;
}
}
} inline int get(int cnt){
int ret = 0;
rep(i, 1, 3) rep(j, 1, 3) ret += f[cnt][i][j] * mul[i][j];
return ret;
} inline void work(int cnt){
int h = get(cnt);
mp.insert(h);
} inline void output(int cnt){
dec(i, 3, 1) dec(j, 3, 1) printf("%d", f[cnt][i][j]); putchar(10);
} inline void out(){
dec(i, 3, 1) dec(j, 3, 1) printf("%d", c[i][j]); putchar(10);
} inline void check(){
int ret = 0;
rep(i, 1, 3) rep(j, 1, 3) ret += c[i][j] * mul[i][j];
if (mp.count(ret)) return;
// out();
mp.insert(ret);
++cnt;
rep(i, 1, 3) rep(j, 1, 3) f[cnt][i][j] = c[i][j];
} void judge(){
int ret = 0;
rep(i, 1, 3) rep(j, 1, 3) ret += c[i][j] * mul[i][j];
if (mp.count(ret)) puts("definable");
else puts("undefinable"); } int main(){ freopen("1.txt", "r", stdin);
freopen("2.txt", "w", stdout); init();
rep(i, 1, 3) rep(j, 1, 3){
an[i][j] = min(i, j);
oo[i][j] = max(i, j);
eq[i][j] = (i == j) ? 3 : 1;
} im[1][1] = im[1][2] = im[1][3] = 3;
im[2][1] = 2; im[2][2] = im[2][3] = 3;
im[3][1] = 1; im[3][2] = 2; im[3][3] = 3; ++cnt; rep(i, 1, 3) rep(j, 1, 3) f[cnt][i][j] = im[i][j]; work(cnt);
++cnt; rep(i, 1, 3) rep(j, 1, 3) f[cnt][i][j] = an[i][j]; work(cnt);
++cnt; rep(i, 1, 3) rep(j, 1, 3) f[cnt][i][j] = oo[i][j]; work(cnt);
++cnt; rep(i, 1, 3) rep(j, 1, 3) f[cnt][i][j] = eq[i][j]; work(cnt); rep(op, 1, 10){
ct = cnt;
rep(k, 1, ct){
rep(l, 1, 4){
rep(i, 1, 3) rep(j, 1, 3) c[i][j] = f[k][i][j];
rep(i, 1, 3) rep(j, 1, 3){
c[i][j] = f[l][f[k][i][j]][i];
check();
c[i][j] = f[l][f[k][i][j]][j];
check();
rep(i, 1, 3) rep(j, 1, 3) c[i][j] = f[k][i][j];
}
}
}
// printf("%d\n", cnt);
} // printf("%d\n", cnt); scanf("%d", &T);
while (T--){
rep(i, 1, 3){
rep(j, 1, 3){
char ch[2];
scanf("%s", ch);
if (ch[0] == 'F') c[i][j] = 1;
if (ch[0] == 'U') c[i][j] = 2;
if (ch[0] == 'T') c[i][j] = 3;
}
} judge();
}
return 0;
}

Problem G

Problem H

Problem I  Intuidiff II

这题目描述真是绕得可以

其实题意就是按给出的顺序选出若干个不相交并且左端点递增的区间。

区间的价值是这个区间的长度+1

然后就变成水题了。

#include <bits/stdc++.h>

using namespace std;

#define rep(i, a, b)	for (int i(a); i <= (b); ++i)
#define dec(i, a, b) for (int i(a); i >= (b); --i)
#define MP make_pair
#define fi first
#define se second typedef long long LL; const int N = 2e5 + 10; struct node{
int x, y;
LL val;
friend bool operator < (const node &a, const node &b){
return a.x < b.x;
}
} d[N]; int a[N], b[N];
int n;
int cnt = 0;
int tt; LL c[N];
LL f[N]; void update(int x, LL val){
for (; x <= N - 2; x += x & -x) c[x] = max(c[x], val);
} LL query(int x){
LL ret = 0;
for (; x; x -= x & -x) ret = max(ret, c[x]);
return ret;
} int main(){ scanf("%d", &n);
rep(i, 1, n * 2) scanf("%d", a + i), b[i] = a[i];
rep(i, 1, n) d[i].val = 0ll + a[i * 2] - a[i * 2 - 1] + 1;
sort(b + 1, b + 2 * n + 1);
cnt = unique(b + 1, b + 2 * n + 1) - b - 1;
rep(i, 1, n * 2) a[i] = lower_bound(b + 1, b + cnt + 1, a[i]) - b; rep(i, 1, n){
++tt;
d[i].x = a[tt];
++tt;
d[i].y = a[tt];
} rep(i, 1, n){
f[i] = query(d[i].x - 1) + d[i].val;
update(d[i].y, f[i]);
} LL ans = 0;
rep(i, 1, N - 2) ans = max(ans, f[i]);
printf("%lld\n", ans);
return 0;
}

2016-2017 ACM-ICPC, South Pacific Regional Contest (SPPC 16)的更多相关文章

  1. ACM ICPC Central Europe Regional Contest 2013 Jagiellonian University Kraków

    ACM ICPC Central Europe Regional Contest 2013 Jagiellonian University Kraków Problem A: Rubik’s Rect ...

  2. 2017 ACM - ICPC Asia Ho Chi Minh City Regional Contest

    2017 ACM - ICPC Asia Ho Chi Minh City Regional Contest A - Arranging Wine 题目描述:有\(R\)个红箱和\(W\)个白箱,将这 ...

  3. 2017 ACM/ICPC Asia Regional Shenyang Online spfa+最长路

    transaction transaction transaction Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 132768/1 ...

  4. 2017 ACM ICPC Asia Regional - Daejeon

    2017 ACM ICPC Asia Regional - Daejeon Problem A Broadcast Stations 题目描述:给出一棵树,每一个点有一个辐射距离\(p_i\)(待确定 ...

  5. 2017 ACM/ICPC Asia Regional Qingdao Online

    Apple Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Total Submi ...

  6. 2017 ACM/ICPC Shenyang Online SPFA+无向图最长路

    transaction transaction transaction Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 132768/1 ...

  7. 2019-2020 ICPC, Asia Jakarta Regional Contest (Online Mirror, ICPC Rules, Teams Preferred)

    2019-2020 ICPC, Asia Jakarta Regional Contest (Online Mirror, ICPC Rules, Teams Preferred) easy: ACE ...

  8. HDU - 6215 2017 ACM/ICPC Asia Regional Qingdao Online J - Brute Force Sorting

    Brute Force Sorting Time Limit: 1 Sec  Memory Limit: 128 MB 题目连接 http://acm.hdu.edu.cn/showproblem.p ...

  9. 2017 ACM/ICPC Asia Regional Shenyang Online(部分题解)

    HDU 6197 array array array 题意 输入n和k,表示输入n个整数和可以擦除的次数k,如果至多擦除k次能是的数组中的序列是不上升或者是不下降序列,就是魔力数组,否则不是. 解题思 ...

随机推荐

  1. 万门大学Python零基础10天进阶班视频教程

    点击了解更多Python课程>>> 万门大学Python零基础10天进阶班视频教程 课程简介: 旨在通过两周的学习,让学生不仅能掌握python编程基础从而进行计算机程序的开发, 还 ...

  2. destoon 后台入口文件分析

    <?php/* [Destoon B2B System] Copyright (c) 2008-2015 www.destoon.com This is NOT a freeware, use ...

  3. ThinkPHP5 高级查询之构建分组条件

    ThinkPHP5 高级查询之构建分组条件 一.在tp5中通过where方法如何构建分组条件, 例如:where user_id=$this->user_id and (status in (4 ...

  4. List<Object>删除某一个Object

    1.直接删除: List<LineShop> tlineprices  = new ArrayList<>(); tlineprices.remove(0); 2.使用遍历删除 ...

  5. python中打印金字塔和九九乘法表的几种方法

    # 打印九九乘法表for i in range(1,10): for j in range(1,i+1): # x=i*j # print(i,'*',j,'=',x,end=' ') print(' ...

  6. navigationcontroller和navigationbar和navigationitem之间的区别以及不用nib实现点击屏幕关闭虚拟键盘20130911

    1.UIViewController UIView的关系. UIView是视图,UIViewController是视图控制器,两者之间是从属关系,当创建一个UIViewController的时候,一般 ...

  7. hiho 1050 树的直径

    #1050 : 树中的最长路 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 上回说到,小Ho得到了一棵二叉树玩具,这个玩具是由小球和木棍连接起来的,而在拆拼它的过程中, ...

  8. 安装repo

    $ sudo apt-get install curl -y$ curl "http://android.git.linaro.org/gitweb?p=tools/repo.git;a=b ...

  9. Java技术——Java泛型详解

    .为什么需要泛型 转载请注明出处:http://blog.csdn.net/seu_calvin/article/details/52230032 泛型在Java中有很重要的地位,网上很多文章罗列各种 ...

  10. 枚举进程——暴力搜索内存(Ring0)

    上面说过了隐藏进程,这篇博客我们就简单描述一下暴力搜索进程. 一个进程要运行,必然会加载到内存中,断链隐藏进程只是把EPROCESS从链表上摘除了,但它还是驻留在内存中的.这样我们就有了找到它的方法. ...