题目描述

Just like humans enjoy playing the game of Hopscotch, Farmer John's cows have invented a variant of the game for themselves to play. Being played by clumsy animals weighing nearly a ton, Cow Hopscotch almost always ends in disaster, but this has surprisingly not deterred the cows from attempting to play nearly every afternoon.

The game is played on an R by C grid (2 <= R <= 750, 2 <= C <= 750), where each square is labeled with an integer in the range 1..K (1 <= K <= R*C). Cows start in the top-left square and move to the bottom-right square by a sequence of jumps, where a jump is valid if and only if

1) You are jumping to a square labeled with a different integer than your current square,

2) The square that you are jumping to is at least one row below the current square that you are on, and

3) The square that you are jumping to is at least one column to the right of the current square that you are on.

Please help the cows compute the number of different possible sequences of valid jumps that will take them from the top-left square to the bottom-right square.

就像人类喜欢跳格子游戏一样,FJ的奶牛们发明了一种新的跳格子游戏。虽然这种接近一吨的笨拙的动物玩跳格子游戏几乎总是不愉快地结束,但是这并没有阻止奶牛们在每天下午参加跳格子游戏 
游戏在一个R*C的网格上进行,每个格子有一个取值在1-k之间的整数标号,奶牛开始在左上角的格子,目的是通过若干次跳跃后到达右下角的格子,当且仅当格子A和格子B满足如下条件时能从格子A跳到格子B: 
1.B格子在A格子的严格右方(B的列号严格大于A的列号) 
2.B格子在A格子的严格下方(B的行号严格大于A的行号) 
3.B格子的标号和A格子的标号不同 
请你帮助奶牛计算出从左上角的格子到右下角的格子一共有多少种不同的方案

输入

The first line contains the integers R, C, and K. The next R lines will each contain C integers, each in the range 1..K.
第一行包含两个整数R C K 
接下来的R行,每行C个整数表示格子的标号

输出

Output the number of different ways one can jump from the top-left square to the bottom-right square, mod 1000000007.

一行,代表有多少种不同的方案,由于答案很大,请输出答案对1000000007取模的结果

样例输入

4 4 4
1 1 1 1
1 3 2 1
1 2 4 1
1 1 1 1

样例输出

5


题解

动态开点线段树优化dp

首先有dp方程$f[x][y]=\sum\limits_{i=1}^{x-1}\sum\limits_{j=1\& c[i][j]\neq c[x][y]}^{y-1}f[i][j]=\sum\limits_{i=1}^{x-1}\sum\limits_{j=1}^{y-1}f[i][j]-\sum\limits_{i=1}^{x-1}\sum\limits_{j=1\& c[i][j]=c[x][y]}^{y-1}f[i][j]$。

前面那个东西我们可以使用二维前缀和优化,而后面的那个东西只能使用数据结构。

考虑我们的dp方式:先循环行、再循环列。那么搜到某一行时,它之前的一定是行数比它小的,所以不用管这个条件,只要维护列即可,即维护第1~x列某种颜色的f之和。

由于颜色数太多,显然不能使用静态数据结构,所以使用动态开点线段树,对每一个颜色开一棵线段树维护区间和。

对于第i行,先对于第j列求出1~j-1列与它颜色相同的f的和,然后再循环一遍,更新二维前缀和及线段树。

时间复杂度$O(nm\log nm)$

#include <cstdio>
#include <algorithm>
#define N 800
#define M 600000
using namespace std;
const int mod = 1000000007;
int c[N][N] , f[N][N] , sum[N][N] , root[M] , ls[M * 15] , rs[M * 15] , si[M * 15] , tot;
void update(int p , int a , int l , int r , int &x)
{
if(!x) x = ++tot;
si[x] = (si[x] + a) % mod;
if(l == r) return;
int mid = (l + r) >> 1;
if(p <= mid) update(p , a , l , mid , ls[x]);
else update(p , a , mid + 1 , r , rs[x]);
}
int query(int b , int e , int l , int r , int x)
{
if(b <= l && r <= e) return si[x];
int mid = (l + r) >> 1 , ans = 0;
if(b <= mid) ans += query(b , e , l , mid , ls[x]);
if(e > mid) ans += query(b , e , mid + 1 , r , rs[x]);
return ans % mod;
}
int main()
{
int n , m , i , j;
scanf("%d%d%*d" , &n , &m);
for(i = 1 ; i <= n ; i ++ )
for(j = 1 ; j <= m ; j ++ )
scanf("%d" , &c[i][j]);
f[1][1] = sum[1][1] = 1 , update(1 , 1 , 1 , m , root[c[1][1]]);
for(i = 2 ; i <= n ; i ++ ) sum[i][1] = 1;
for(i = 2 ; i <= m ; i ++ ) sum[1][i] = 1;
for(i = 2 ; i <= n ; i ++ )
{
for(j = 2 ; j <= m ; j ++ ) f[i][j] = (sum[i - 1][j - 1] - query(1 , j - 1 , 1 , m , root[c[i][j]]) + mod) % mod;
for(j = 2 ; j <= m ; j ++ ) sum[i][j] = (((sum[i][j - 1] + sum[i - 1][j]) % mod + f[i][j]) % mod - sum[i - 1][j - 1] + mod) % mod;
for(j = 2 ; j <= m ; j ++ ) update(j , f[i][j] , 1 , m , root[c[i][j]]);
}
printf("%d\n" , f[n][m]);
return 0;
}

【bzoj3939】[Usaco2015 Feb]Cow Hopscotch 动态开点线段树优化dp的更多相关文章

  1. BZOJ3939 : [Usaco2015 Feb]Cow Hopscotch

    设f[i][j]表示到(i,j)的方案数,则有 $f[i][j]=\sum f[x][y](x<i,y<j,a[x][y]!=a[i][j])=\sum f[x][y](x<i,y& ...

  2. 【BZOJ3939】[Usaco2015 Feb]Cow Hopscotch 动态规划+线段树

    [BZOJ3939][Usaco2015 Feb]Cow Hopscotch Description Just like humans enjoy playing the game of Hopsco ...

  3. [2016湖南长沙培训Day4][前鬼后鬼的守护 chen] (动态开点线段树+中位数 or 动规 or 贪心+堆优化)

    题目大意 给定一个长度为n的正整数序列,令修改一个数的代价为修改前后两个数的绝对值之差,求用最小代价将序列转换为不减序列. 其中,n满足小于500000,序列中的正整数小于10^9 题解(引自mzx神 ...

  4. [bzoj 3531][SDOI2014]旅行(树链剖分+动态开点线段树)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3531 分析: 对于每个颜色(颜色<=10^5)都建立一颗线段树 什么!那么不是M ...

  5. 【BZOJ-4636】蒟蒻的数列 动态开点线段树 ||(离散化) + 标记永久化

    4636: 蒟蒻的数列 Time Limit: 30 Sec  Memory Limit: 256 MBSubmit: 247  Solved: 113[Submit][Status][Discuss ...

  6. codeforces 893F - Physical Education Lessons 动态开点线段树合并

    https://codeforces.com/contest/893/problem/F 题意: 给一个有根树, 多次查询,每次查询对于$x$i点的子树中,距离$x$小于等于$k$的所有点中权值最小的 ...

  7. codeforces 915E - Physical Education Lessons 动态开点线段树

    题意: 最大$10^9$的区间, $3*10^5$次区间修改,每次操作后求整个区间的和 题解: 裸的动态开点线段树,计算清楚数据范围是关键... 经过尝试 $2*10^7$会$MLE$ $10^7$会 ...

  8. CF915E Physical Education Lessons 动态开点线段树

    题目链接 CF915E Physical Education Lessons 题解 动态开点线段树 代码 /* 动态开点线段树 */ #include<cstdio> #include&l ...

  9. 洛谷P3313 [SDOI2014]旅行(树链剖分 动态开节点线段树)

    题意 题目链接 Sol 树链剖分板子 + 动态开节点线段树板子 #include<bits/stdc++.h> #define Pair pair<int, int> #def ...

随机推荐

  1. 在2017年,如何将你的小米4刷上Windows 10 mobile?(后附大量图赏)

    众多攻略集大成者!资深软粉亲测有效! 参考教程: http://bbs.xiaomi.cn/t-11814358 http://bbs.xiaomi.cn/t-11736827 问:刷机前,我需要做什 ...

  2. acid (数据库事务正确执行的四个基本要素的缩写)

    ACID,指数据库事务正确执行的四个基本要素的缩写.包含:原子性(Atomicity).一致性(Consistency).隔离性(Isolation).持久性(Durability).一个支持事务(T ...

  3. 2018.3.5 Java语言基础与面向对象编程实践

    Java语言基础与面向对象编程实践 第一章 初识Java 1.Java特点 http://www.manew.com/blog-166576-20164.html Java语言面向对象的 Java语言 ...

  4. stixel-world跑在kitti数据集

    kitti数据集中每一帧的Calibration不同,每一帧都存储了4个相机的Calibration http://ww.cvlibs.net/publications/Geiger2013IJRR. ...

  5. centos Chrony设置服务器集群同步时间

    Chrony是一个开源的自由软件,像CentOS 7或基于RHEL 7操作系统,已经是默认服务,默认配置文件在 /etc/chrony.conf 它能保持系统时间与时间服务器(NTP)同步,让时间始终 ...

  6. 关于Java虚拟机JVM的简单了解

    JVM主要功能 Java是一种高级编程语言. 用高级语言编写的程序不能直接在任何机器上运行. 首先,需要将其翻译成特定的机器语言,javac编译器就专门来干这个事儿的,它把Java程序(含有的.jav ...

  7. “CTL_CODE”未定义

    C4013 “CTL_CODE”未定义:假设外部返回 int 要加入 #include<winioctl.h> 并且要放在#include<windows.h>的后面

  8. Bootstrap标签页(Tab)插件

    标签页(Tab)在Bootstrap导航元素一章中简介过,通过结合一些data属性,您可以轻松地创建一些标签页界面.通过这个插件您可以把内容放置在标签页或胶囊式标签页甚至是下拉菜单标签页中. 用法 您 ...

  9. 在ASP.NET项目中的web.config文件里配置数据库连接并在程序代码中获取连接字符串

      1.在<connectionStrings> 标签里添加连接 <connectionStrings> <add name="ConnectionName&q ...

  10. comboBox 下拉宽度自适应

    ///适用combobox绑定datatable private void comboBox_DataSourceChanged(object sender, EventArgs e) { Combo ...