题目描述##

\[\sum\limits_{i=1}^{n} \sum\limits_{j=1}^{n} i*j*gcd(i,j) \pmod{p}
\]

\(n<=10^{10}\),\(p\)是质数

题解##

推导很长就省略啦,,

有空补回来

最后推得这个式子:

\[\sum\limits_{T = 1}^{n} (\frac{\lfloor \frac{n}{T} \rfloor * (\lfloor \frac{n}{T} \rfloor + 1)}{2})^2 * T^2 * \varphi(T)
\]

前边分块,后边杜教筛

杜教筛的\(g(n)\)取\(g(n) = n^2\)

#include<iostream>
#include<cstdio>
#include<cmath>
#include<map>
#include<cstring>
#include<algorithm>
#define LL long long int
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<' '; puts("");
using namespace std;
const int maxn = 5000005,maxm = 100005,INF = 1000000000;
typedef map<LL,LL> Map;
Map _f;
LL P,N,v6,v2;
LL p[maxn],pi,phi[maxn],f[maxn];
int isn[maxn];
LL qpow(LL a,LL b){
LL ans = 1;
for (; b; b >>= 1,a = a * a % P)
if (b & 1) ans = ans * a % P;
return ans;
}
void init(LL n){
v6 = qpow(6,P - 2);
v2 = qpow(2,P - 2);
N = (LL)pow(n,2.0 / 3.0);
phi[1] = 1;
for (LL i = 2; i < N; i++){
if (!isn[i]) p[++pi] = i,phi[i] = (i - 1) % P;
for (LL j = 1; j <= pi && i * p[j] < N; j++){
isn[i * p[j]] = true;
if (i % p[j] == 0){
phi[i * p[j]] = phi[i] * p[j] % P;
break;
}
phi[i * p[j]] = phi[i] * (p[j] - 1) % P;
}
}
for (LL i = 1; i < N; i++) f[i] = (f[i - 1] + i * i % P * phi[i] % P) % P;
}
LL sum(LL n){
n %= P;
LL tmp = n * (n + 1) % P * v2 % P;
return tmp * tmp % P;
}
LL sum2(LL n){
n %= P;
return n * (n + 1) % P * (2 * n % P + 1) % P * v6 % P;
}
LL S(LL n){
if (n < N) return f[n];
Map::iterator it;
if ((it = _f.find(n)) != _f.end())
return it->second;
LL ans = n % P * ((n + 1) % P) % P * v2 % P;
ans = ans * ans % P;
for (LL i = 2,nxt; i <= n; i = nxt + 1){
nxt = n / (n / i);
ans = (ans - (sum2(nxt) - sum2(i - 1)) % P * S(n / i) % P) % P;
}
ans = (ans + P) % P;
return _f[n] = ans;
}
int main(){
LL n,ans = 0;
cin >> P >> n;
init(n);
for (LL i = 1,nxt; i <= n; i = nxt + 1){
nxt = n / (n / i);
ans = (ans + sum(n / i) * ((S(nxt) - S(i - 1)) % P) % P) % P;
}
ans = (ans + P) % P;
cout << ans << endl;
return 0;
}

洛谷P3768 简单的数学题 【莫比乌斯反演 + 杜教筛】的更多相关文章

  1. 洛谷P3768 简单的数学题 莫比乌斯反演+杜教筛

    题意简述 求出这个式子 \[ \sum_{i=1}^n\sum_{j=1}^n ij(i,j) \bmod p \] 做法 先用莫比乌斯反演拆一下式子 \[ \begin{split} \sum_{i ...

  2. 「洛谷P3768」简单的数学题 莫比乌斯反演+杜教筛

    题目链接 简单的数学题 题目描述 输入一个整数n和一个整数p,你需要求出 \[\sum_{i=1}^n\sum_{j=1}^n (i\cdot j\cdot gcd(i,j))\ mod\ p\]  ...

  3. luogu 3768 简单的数学题 (莫比乌斯反演+杜教筛)

    题目大意:略 洛谷传送门 杜教筛入门题? 以下都是常规套路的变形,不再过多解释 $\sum\limits_{i=1}^{N}\sum\limits_{j=1}^{N}ijgcd(i,j)$ $\sum ...

  4. LOJ#6229. 这是一道简单的数学题(莫比乌斯反演+杜教筛)

    题目链接 \(Description\) 求\[\sum_{i=1}^n\sum_{j=1}^i\frac{lcm(i,j)}{gcd(i,j)}\] 答案对\(10^9+7\)取模. \(n< ...

  5. [复习]莫比乌斯反演,杜教筛,min_25筛

    [复习]莫比乌斯反演,杜教筛,min_25筛 莫比乌斯反演 做题的时候的常用形式: \[\begin{aligned}g(n)&=\sum_{n|d}f(d)\\f(n)&=\sum_ ...

  6. 【bzoj3930】[CQOI2015]选数 莫比乌斯反演+杜教筛

    题目描述 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公约数,以便进一 ...

  7. [BZOJ 3930] [CQOI 2015]选数(莫比乌斯反演+杜教筛)

    [BZOJ 3930] [CQOI 2015]选数(莫比乌斯反演+杜教筛) 题面 我们知道,从区间\([L,R]\)(L和R为整数)中选取N个整数,总共有\((R-L+1)^N\)种方案.求最大公约数 ...

  8. 洛谷 - P3768 - 简单的数学题 - 欧拉函数 - 莫比乌斯反演

    https://www.luogu.org/problemnew/show/P3768 \(F(n)=\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{n}ijgcd(i ...

  9. 【刷题】洛谷 P3768 简单的数学题

    题目描述 由于出题人懒得写背景了,题目还是简单一点好. 输入一个整数n和一个整数p,你需要求出(\(\sum_{i=1}^n\sum_{j=1}^n ijgcd(i,j))~mod~p\),其中gcd ...

  10. 洛谷 P3768 简单的数学题 解题报告

    P3768 简单的数学题 题目描述 由于出题人懒得写背景了,题目还是简单一点好. 输入一个整数\(n\)和一个整数\(p,\)你需要求出\((\sum_{i=1}^n\sum_{j=1}^n ijgc ...

随机推荐

  1. HTML5<section>元素

    HTML5<section>元素用来定义页面文档中的逻辑区域或内容的整合(section,区域),比如章节.页眉.页脚或文档中的其他部分. 根据W3C HTML5文档中:section里面 ...

  2. 在ASP.NET项目中的web.config文件里配置数据库连接并在程序代码中获取连接字符串

      1.在<connectionStrings> 标签里添加连接 <connectionStrings> <add name="ConnectionName&q ...

  3. php常见验证

    /** * 文件上传 * @param $file 要上传的文件 * @param $size 大小设置 * @param $ext 文件类型 * @return bool 是否上传成功 */func ...

  4. Java基础面试操作题:Java代理工厂设计模式 ProxyFactory 有一个Baby类,有Cry行为,Baby可以配一个保姆 但是作为保姆必须遵守保姆协议:能够处理Baby类Cry的行为,如喂奶、哄睡觉。

    package com.swift; public class Baby_Baomu_ProxyFactory_Test { public static void main(String[] args ...

  5. DNA Pairing-freecodecamp算法题目

    DNA Pairing 1.要求 DNA 链缺少配对的碱基.依据每一个碱基,为其找到配对的碱基,然后将结果作为第二个数组返回. Base pairs(碱基对)是一对 AT 和 CG,为给定的字母匹配缺 ...

  6. Python pip 使用国内镜像

    ## 推荐源```https://mirrors.aliyun.com/pypi/simple/ 阿里镜像,速度快.稳定https://pypi.douban.com/simple/ 豆瓣镜像```# ...

  7. 【php】函数重载问题

    PHP 不支持函数重载,也不可能取消定义或者重定义已声明的函数.

  8. Django小总结

    初始Git git init 初始化本地仓库,会在根目录下创建一个.git文件夹 git log 查看提交日志 git status 查看日志 git add 文件名 添加到缓存区 git commi ...

  9. w3resource_MySQL练习: Aggregate_functions

    w3resource_MySQL练习题:Aggregate_functions   1. Write a query to list the number of jobs available in t ...

  10. graph-basic

    打算使用STL中的vector,通过邻接链表的方式存储图.这里贴基本定义,以及depth-first-search和breadth-first-search的实现代码. 其他图的算法实现,就贴在各自的 ...