1.数据结构

主要的数据结构有:1.Attribute List  2.Class List

对于数据集,每一个属性都有一个对应的Attribute List.如上图所示,每个Attribute List有两列,分别是对应的属性值和该条记录在Class List里的索引。根据不同的索引值,可以得到记录的类标。对于连续型的属性,Attribute List应当是有序的。

对于Class List,存储的是每条记录对应的类标以及记录所在的当前叶节点。Class List 需常驻内存当中。

2.算法过程

gini index:如果一个数据集D有n个不同的类,那么:

在属性A下,把数据集分为D1和D2,那么:

基尼增益定义:

算法思想:扫描全部的Attribute List.对于每一个不同的Attribute List,从上到下扫描,并计算以当前记录split所得出的基尼增益。从而求出最大基尼增益的属性和分裂点。

在对Attribute List 从上到下扫描时,需要用到另一种数据结构——类直方图。类直方图的行表分裂点的左边和右边,列代表不同的类。如上图所示,当算法扫描到Salary List的第一条记录时,首先根据index找到当前记录所属的叶子节点。可知,salary = 15时这条记录属于N2节点。当前N2节点有两条记录,类直方图初始化时默认这两条记录属于未分裂。所以,在N2节点中共有两条记录,分别是索引值1和索引值2的记录。在Class List中可知,这两条记录分别属于G类和B类。

算法在扫描到salary = 15这条记录时,实际上是在N2这个节点做了一次试探性的分裂,N2中salary<=15的记录归为左边,其余的归为右边。类直方图可变为:

从而可以根据这次分裂算得基尼增益:

依次向下扫描,分别得到每一次试探性分裂的基尼增益,选择基尼增益最大的分裂。比如,在N2节点中,选择salary = 15这条记录分裂所得的基尼增益最大,那么在该节点的分裂点就是(a1+a2)/2,也就是40.

算法在决定每一个当前叶子节点的分裂点之后,需要根据分裂点,更新Class List中每条记录所属的叶子节点。然后再次循环分裂。

[数据挖掘课程笔记]SLIQ算法的更多相关文章

  1. [数据挖掘课程笔记]关联规则挖掘 - Apriori算法

    两种度量: 支持度(support)  support(A→B) = count(AUB)/N (N是数据库中记录的条数) 自信度(confidence)confidence(A→B) = count ...

  2. [数据挖掘课程笔记]基于规则的分类-顺序覆盖算法(sequential covering algorithm)

    Rule_set = {}; //学习的规则集初试为空 for 每个类c do repeat Rule = Learn_One_Rule(D,Att-vals,c) 从D中删除被Rule覆盖的元组; ...

  3. 数据挖掘学习笔记--AdaBoost算法(一)

    声明: 这篇笔记是自己对AdaBoost原理的一些理解,如果有错,还望指正,俯谢- 背景: AdaBoost算法,这个算法思路简单,但是论文真是各种晦涩啊-,以下是自己看了A Short Introd ...

  4. [数据挖掘课程笔记]无监督学习——聚类(clustering)

    什么是聚类(clustering) 个人理解:聚类就是将大量无标签的记录,根据它们的特点把它们分成簇,最后结果应当是相同簇之间相似性要尽可能大,不同簇之间相似性要尽可能小. 聚类方法的分类如下图所示: ...

  5. [数据挖掘课程笔记]人工神经网络(ANN)

    人工神经网络(Artificial Neural Networks)顾名思义,是模仿人大脑神经元结构的模型.上图是一个有隐含层的人工神经网络模型.X = (x1,x2,..,xm)是ANN的输入,也就 ...

  6. [数据挖掘课程笔记]Naïve Bayesian Classifier

    朴素贝叶斯模型 1) X:一条未被标记的数据 2) H:一个假设,如H=X属于Ci类 根据贝叶斯公式 把X表示为(x1,x2,....xn) x1,x2,....xn表示X在各个特征上的值. 假设有c ...

  7. Andrew Ng机器学习课程笔记--汇总

    笔记总结,各章节主要内容已总结在标题之中 Andrew Ng机器学习课程笔记–week1(机器学习简介&线性回归模型) Andrew Ng机器学习课程笔记--week2(多元线性回归& ...

  8. 深度学习课程笔记(三)Backpropagation 反向传播算法

    深度学习课程笔记(三)Backpropagation 反向传播算法 2017.10.06  材料来自:http://speech.ee.ntu.edu.tw/~tlkagk/courses_MLDS1 ...

  9. Andrew Ng机器学习课程笔记(五)之应用机器学习的建议

    Andrew Ng机器学习课程笔记(五)之 应用机器学习的建议 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7368472.h ...

随机推荐

  1. c#使用椭圆签名算法制作软件序列号

    椭圆曲线密码学(Elliptic curve cryptography,缩写为ECC)是基于椭圆曲线数学的一种公钥密码的方法.椭圆曲线在密码学中的使用是在1985年由Neal Koblitz和Vict ...

  2. Django简单粗暴快速发送邮件!

    >>尽管Python已经提供了相对易用的邮件发送模块 smtplib ,但Django仍对其做了轻度的封装.封装后的模块不仅发送邮件速度快,而且在开发环境下也很容易对邮件发送进行测试, 并 ...

  3. SQLite数据库中rowid使用

    SQLite数据库中rowid使用   SQLite中每个表都默认包含一个隐藏列rowid,使用WITHOUT ROWID定义的表除外.通常情况下,rowid可以唯一的标记表中的每个记录.表中插入的第 ...

  4. Codeforces 323 B Tournament-graph

    Discription In this problem you have to build tournament graph, consisting of n vertices, such, that ...

  5. Css实现一个菜单导航

    提要:使用大div定位设置为relative,子div设置为absolute实现菜单下拉 实现代码: <!DOCTYPE html> <html lang="en" ...

  6. javascript 对象初探 (四)--- 内建对象之旅之Boolean

    var a = new Boolean() 我们要明白一点在这里的b是一个对象而不是一个基本数据类型的布尔值.如果想将b转化成基本数据类型的布尔值,我们可以调用她的valueof()方法(继承自Obj ...

  7. dubbo常见问题解答FAQ

    常见问题解答 1. 如果服务注册不上怎么办? 2. 出现RpcException: No provider available for remote service异常怎么办? 3. 出现调用超时co ...

  8. mysql序列号发生器

    mysql序列号发生器 学习了:http://www.jquerycn.cn/a_14577 还可以这样啊:

  9. c#列表操作

    Enumerable[从元数据]   //        // 摘要:         //     从序列的开头返回指定数量的连续元素.        //        // 参数:        ...

  10. POJ 1141 Brackets Sequence (区间DP)

    Description Let us define a regular brackets sequence in the following way: 1. Empty sequence is a r ...