Brackets

Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 8716   Accepted: 4660

Description

We give the following inductive definition of a “regular brackets” sequence:

  • the empty sequence is a regular brackets sequence,
  • if s is a regular brackets sequence, then (s) and [s] are regular brackets sequences, and
  • if a and b are regular brackets sequences, then ab is a regular brackets sequence.
  • no other sequence is a regular brackets sequence

For instance, all of the following character sequences are regular brackets sequences:

(), [], (()), ()[], ()[()]

while the following character sequences are not:

(, ], )(, ([)], ([(]

Given a brackets sequence of characters a1a2 … an, your goal is to find the length of the longest regular brackets sequence that is a subsequence of s. That is, you wish to find the largest m such that for indices i1i2, …, im where 1 ≤i1 < i2 < … < im ≤ nai1ai2 … aim is a regular brackets sequence.

Given the initial sequence ([([]])], the longest regular brackets subsequence is [([])].

Input

The input test file will contain multiple test cases. Each input test case consists of a single line containing only the characters ()[, and ]; each input test will have length between 1 and 100, inclusive. The end-of-file is marked by a line containing the word “end” and should not be processed.

Output

For each input case, the program should print the length of the longest possible regular brackets subsequence on a single line.

Sample Input

((()))
()()()
([]])
)[)(
([][][)
end

Sample Output

6
6
4
0
6

分析

dp[l][r]表示区间[l,r]的答案。

状态转移方程,详见代码

  • dp[i][j] = max(dp[i+1][j],dp[i][j-1]);
  • if ((s[i]=='('&&s[j]==')')||(s[i]=='['&&s[j]==']'))
      dp[i][j]=dp[i+1][j-1]+2;
  • dp[l][r]=max(dp[l][r],dp[l][k]+dp[k+1][r]);

code

 #include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
char s[];
int dp[][]; int main()
{
while (scanf("%s",s)!=EOF)
{
memset(dp,,sizeof(dp));
if (s[]=='e') break;
int len = strlen(s);
for (int i=len-; i>=; --i)
{
for (int j=i; j<len; ++j)
{
dp[i][j] = max(dp[i+][j],dp[i][j-]);
if ((s[i]=='('&&s[j]==')')||(s[i]=='['&&s[j]==']'))
dp[i][j]=dp[i+][j-]+;
for (int k=i; k<j; ++k)
dp[i][j] = max(dp[i][j],dp[i][k]+dp[k+][j]);
}
}
printf("%d\n",dp[][len-]);
}
return ;
}

poj2955:Brackets的更多相关文章

  1. POJ2955 Brackets —— 区间DP

    题目链接:https://vjudge.net/problem/POJ-2955 Brackets Time Limit: 1000MS   Memory Limit: 65536K Total Su ...

  2. POJ-2955 Brackets(括号匹配问题)

    题目链接:http://poj.org/problem?id=2955 这题要求求出一段括号序列的最大括号匹配数量 规则如下: the empty sequence is a regular brac ...

  3. poj2955 Brackets (区间dp)

    题目链接:http://poj.org/problem?id=2955 题意:给定字符串 求括号匹配最多时的子串长度. 区间dp,状态转移方程: dp[i][j]=max ( dp[i][j] , 2 ...

  4. 间隔DP基础 POJ2955——Brackets

    取血怒.first blood,第一区间DP,这样第一次没有以某种方式在不知不觉中下降~~~ 题目尽管是鸟语.但还是非常赤裸裸的告诉我们要求最大的括号匹配数.DP走起~ dp[i][j]表示区间[i, ...

  5. POJ2955 Brackets(区间DP)

    给一个括号序列,求有几个括号是匹配的. dp[i][j]表示序列[i,j]的匹配数 dp[i][j]=dp[i+1][j-1]+2(括号i和括号j匹配) dp[i][j]=max(dp[i][k]+d ...

  6. POJ2955 Brackets (区间DP)

    很好的区间DP题. 需要注意第一种情况不管是否匹配,都要枚举k来更新答案,比如: "()()()":dp[0][5]=dp[1][4]+2=4,枚举k,k=1时,dp[0][1]+ ...

  7. 各种DP总结

    一.数位DP 1.含有或不含某个数“xx”: HDU3555 Bomb HDU2089 不要62 2.满足某些条件,如能整除某个数,或者数位上保持某种特性: HDU3652 B-number Code ...

  8. [总结-动态规划]经典DP状态设定和转移方程

    马上区域赛,发现DP太弱,赶紧复习补上. #普通DP CodeForces-546D Soldier and Number Game 筛法+动态规划 待补 UVALive-8078 Bracket S ...

  9. POJ2955:Brackets(区间DP)

    Description We give the following inductive definition of a “regular brackets” sequence: the empty s ...

随机推荐

  1. Mongodb简介及基本操作

    一.简介 MongoDB是一款强大.灵活.且易于扩展的通用型数据库 MongoDB 是由C++语言编写的,是一个基于分布式文件存储的开源数据库系统. 在高负载的情况下,添加更多的节点,可以保证服务器性 ...

  2. Struts2笔记1

    一.简介 1.作用于web层:Struts2是一种基于MVC模式的轻量级Web框架; 2.各文件夹简介:     apps:该文件夹存用于存放官方提供的Struts2示例程序,这些程序可以作为学习者 ...

  3. Android compress 压缩 会不会失真

    微信的缩略图要求是不大于32k,这就需要对我的图片进行压缩.试了几种方法,一一道来. 代码如下 ByteArrayOutputStream baos = new ByteArrayOutputStre ...

  4. 【Android开发笔记】返回上层Activity的正确打开方式

    技术支持 http://stackoverflow.com/questions/12276027/how-can-i-return-to-a-parent-activity-correctly 首先, ...

  5. Error: unknown argument: '-websockets'

    参考原文:http://www.cocoachina.com/bbs/read.php?tid=194014 解决方法:点击项目右边编辑区域上面有一个building setting找到other l ...

  6. python3基础06(随机数的使用)

    #!/usr/bin/env python# -*- coding:utf-8 -*- import osimport randomimport string la=[0,1,2,3,4,5,6,7, ...

  7. 本人常用的Phpstorm快捷键

    我设置的是eclipse的按键风格(按键习惯),不是phpstorm的风格 1.添加TODO(这个不是快捷键)://TODO 后面是说明,换行写实现代码 2.选择相同单词做一次性修改:Alt+J+鼠标 ...

  8. java Vamei快速教程22 内存管理和垃圾回收

    作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明.谢谢! 整个教程中已经不时的出现一些内存管理和垃圾回收的相关知识.这里进行一个小小的总结. ...

  9. POJ2112 Optimal Milking---二分+Floyd+网络流

    题目链接: https://vjudge.net/problem/POJ-2112 题目大意: k个机器,每个机器最多服务m头牛. c头牛,每个牛需要1台机器来服务. 告诉你牛与机器每个之间的直接距离 ...

  10. 【洛谷1967】货车运输(最大生成树+倍增LCA)

    点此看题面 大致题意: 有\(n\)个城市和\(m\)条道路,每条道路有一个限重.多组询问,每次询问从\(x\)到\(y\)的最大载重为多少. 一个贪心的想法 首先,让我们来贪心一波. 由于要求最大载 ...