斯坦纳树的基础应用

斯坦纳树有什么用

个人一点粗浅理解……

最基本形式的斯坦纳树问题(以下简称母问题):给定图G和一个关键点集V。求在G中选取一个权值最小(这里权值可以有很多变式)的边集E使V中的点两两连通。

由于这个母问题只对关键点有限制。那么可以用状压dp的做法:$f[i][j]$表示对于$i$点而言,它已连通的关键点状态为$j$的最小代价。

那么$f[i][j]$就有两种转移方式:1.从$f[i][t]$转移而来;2.从$f[v][j]$转移而来。

注意到第一种转移就相当于枚举子集;第二种转移形如最短路问题。那么只需要每次额外对于第二种转移做一遍最短路即可。

最终的时间复杂度为$O(n*3^k)$。

相关博客:

1.【bzoj5180】[Baltic2016]Cities 斯坦纳树

2.斯坦纳树 Steiner Tree

【dp套斯坦纳树】bzoj4774: 修路

Description

村子间的小路年久失修,为了保障村子之间的往来,法珞决定带领大家修路。对于边带权的无向图 G = (V, E),
请选择一些边,使得1 <= i <= d, i号节点和 n - i + 1 号节点可以通过选中的边连通,最小化选中的所有边
的权值和。

Input

第一行三个整数 n, m,d,表示图的点数和边数。接下来的 m行,每行三个整数 ui, vi, wi,表示有一条 ui 与 vi 
之间,权值为 wi 的无向边。
1 <= d <= 4
2d <= n <= 10^4
0 <= m <= 10^4
1 <= ui, vi <= n
1 <= wi <= 1000

Output

一行一个整数,表示答案,如果无解输出-1

题目分析

不同的是,这里只要求$i$和$n-i+1$连通。

用$f[i][j]$表示对于$i$节点,$2d$个点的连通状态为$j$时的最小代价。另用$g[t]$表示全局$t$状态时的最小代价。

若$t$状态可拆成$x,y$两个合法状态,$g[x]+g[y]$也可以用于更新$g[t]$状态。

 #include<bits/stdc++.h>
const int maxn = ;
const int maxm = ;
const int INF = 0x3f3f3f3f; struct Edge
{
int y,val;
Edge(int a=, int b=):y(a),val(b) {}
}edges[maxm];
int n,m,d;
bool vis[maxn];
std::queue<int> q;
int f[maxn][],g[];
int edgeTot,head[maxn],nxt[maxm]; int read()
{
char ch = getchar();
int num = ;
bool fl = ;
for (; !isdigit(ch); ch=getchar())
if (ch=='-') fl = ;
for (; isdigit(ch); ch=getchar())
num = (num<<)+(num<<)+ch-;
if (fl) num = -num;
return num;
}
void spfa(int st)
{
for (int i=; i<=n; i++)
if (f[i][st]!=INF) q.push(i);
while (q.size())
{
int tt = q.front();
q.pop(), vis[tt] = ;
for (int i=head[tt]; i!=-; i=nxt[i])
{
int v = edges[i].y, w = edges[i].val;
if (f[v][st] > f[tt][st]+w){
f[v][st] = f[tt][st]+w;
if (!vis[v]) vis[v] = , q.push(v);
}
}
}
}
bool check(int num)
{
for (int i=; i<d; i++)
if (((num>>i)&)&&((num>>(d+i))&)==) return ;
return ;
}
void addedge(int u, int v)
{
int c = read();
edges[++edgeTot] = Edge(v, c), nxt[edgeTot] = head[u], head[u] = edgeTot;
edges[++edgeTot] = Edge(u, c), nxt[edgeTot] = head[v], head[v] = edgeTot;
}
int main()
{
memset(head, -, sizeof head);
memset(f, 0x3f3f3f3f, sizeof f);
memset(g, 0x3f3f3f3f, sizeof g);
n = read(), m = read(), d = read();
for (int i=; i<=m; i++) addedge(read(), read());
for (int i=; i<=d; i++)
f[i][<<(i-)] = , f[n-i+][<<(d+i-)] = ;
for (int i=; i<<<(d<<); i++)
{
for (int j=; j<=n; j++)
for (int s=i&(i-); s; s=(s-)&i)
f[j][i] = std::min(f[j][i], f[j][s]+f[j][i-s]);
spfa(i);
for (int j=; j<=n; j++) g[i] = std::min(g[i], f[j][i]);
}
for (int i=; i<<<(d<<); i++)
for (int s=i&(i-); s; s=(s-)&i)
if (check(s)&&check(i-s))
g[i] = std::min(g[i], g[s]+g[i-s]);
if (g[(<<(d<<))-] != INF)
printf("%d\n",g[(<<(d<<))-]);
else puts("-1");
return ;
}

END

初涉斯坦纳树&&bzoj4774: 修路的更多相关文章

  1. 【BZOJ4774】修路(动态规划,斯坦纳树)

    [BZOJ4774]修路(动态规划,斯坦纳树) 题面 BZOJ 题解 先讲怎么求解最小斯坦纳树. 先明白什么是斯坦纳树. 斯坦纳树可以认为是最小生成树的一般情况.最小生成树是把所有给定点都要加入到联通 ...

  2. 【BZOJ4774/4006】修路/[JLOI2015]管道连接 斯坦纳树

    [BZOJ4774]修路 Description 村子间的小路年久失修,为了保障村子之间的往来,法珞决定带领大家修路.对于边带权的无向图 G = (V, E),请选择一些边,使得1 <= i & ...

  3. 【BZOJ4774】修路 [斯坦纳树]

    修路 Time Limit: 20 Sec  Memory Limit: 256 MB Description Input Output 仅一行一个整数表示答案. Sample Input 5 5 2 ...

  4. 「长乐集训 2017 Day8」修路 (斯坦纳树)

    题目描述 村子间的小路年久失修,为了保障村子之间的往来,AAA君决定带领大家修路. 村子可以看做是一个边带权的无向图GGG, GGG 由 nnn 个点与 mmm 条边组成,图中的点从 1∼n1 \si ...

  5. 【BZOJ2595】游览计划(状压DP,斯坦纳树)

    题意:见题面(我发现自己真是越来越懒了) 有N*M的矩阵,每个格子有一个值a[i,j] 现要求将其中的K个点(称为关键点)用格子连接起来,取(i,j)的费用就是a[i,j] 求K点全部连通的最小花费以 ...

  6. HDU 4085 斯坦纳树

    题目大意: 给定无向图,让前k个点都能到达后k个点(保护地)中的一个,而且前k个点每个需要占据后k个中的一个,相互不冲突 找到实现这个条件达到的选择边的最小总权值 这里很容易看出,最后选到的边不保证整 ...

  7. hdu4085 Peach Blossom Spring 斯坦纳树,状态dp

    (1)集合中元素表示(1<<i), i从0开始 (2)注意dp[i][ss] = min(dp[i][ss], dp[i][rr | s[i]] + dp[i][(ss ^ rr) | s ...

  8. hdu 3311 斯坦纳树

    思路:虚拟一个0号节点,将每个点建一条到0号节点的边,权值为挖井需要的价值.并要保证0号节点同另外n个寺庙一样被选择即可. 然后就是求斯坦纳树了. #include<map> #inclu ...

  9. HDU 3311 Dig The Wells(斯坦纳树)

    [题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=3311 [题意] 给定k座庙,n个其他点,m条边,点权代表挖井费用,边权代表连边费用,问使得k座庙里 ...

随机推荐

  1. git 基本操作——上传文件与项目分支管理

    创建并转入新分支:git checkout –b XX(其中XX代表分支名称) 将新分支发布在github上: git push origin Branch1 往分支中添加文件:git add mas ...

  2. 调试接口,返回的json数据,我定义了一个类,用来序列化,其中有一个字段定义为string 然后序列化的时候报错

    调试接口,返回的json数据,我定义了一个类,用来序列化,其中有一个字段定义为string 然后序列化的时候报错 在需要解析的类型类上加上声明 eg:

  3. PAT甲级——1111 Online Map (单源最短路经的Dijkstra算法、priority_queue的使用)

    本文章同步发布在CSDN:https://blog.csdn.net/weixin_44385565/article/details/90041078   1111 Online Map (30 分) ...

  4. Sanic框架

    Sanic框架 1. 入门 Sanic 是一款类似Flask的Web服务器,它运行在Python 3.5+上. 除了与Flask功能类似之外,它还支持异步请求处理,这意味着你可以使用Python3.5 ...

  5. 2017"百度之星"程序设计大赛 - 初赛(A)小C的倍数问题

    Problem Description 根据小学数学的知识,我们知道一个正整数x是3的倍数的条件是x每一位加起来的和是3的倍数.反之,如果一个数每一位加起来是3的倍数,则这个数肯定是3的倍数. 现在给 ...

  6. FloatHelper

    function FloatHelper() { } FloatHelper.prototype.showFloater = function (Target, Title, Action, Acti ...

  7. 在docker上centos7 编译安装php7

    docker镜像来自daocloud.io/library/centos 首先下载libmcrypt库并make && make install yum -y install gcc ...

  8. css设置文字超出部分显示省略号。。。

    兼容IE/Firefox/Chrome display:block; white-space:nowrap; overflow:hidden; text-overflow:ellipsis;

  9. UIButton 图片文字位置

    在实际开发过程中经常在按钮上添加文字和图片,位置和图片的位置根据需求放置也是不一样的.下面实现了各种显示方式,如下图: UIButton+LSAdditions.h // // UIButton+LS ...

  10. C# 报表和打印等

    说到报表打印.那就不得不说需要查数据库了,然后填写报表信息.设计报表用的 grid++. 查数据库时候,我也是醉了,直接一个表自身与自身级联了4次...一共取了7个表的信息数据. 关于级联--(表字段 ...