数论的板子集合……

Description

你被要求设计一个计算器完成以下三项任务:
1、给定y,z,p,计算Y^Z Mod P 的值;
2、给定y,z,p,计算满足xy≡ Z ( mod P )的最小非负整数;
3、给定y,z,p,计算满足Y^x ≡ Z ( mod P)的最小非负整数。

Input

输入包含多组数据。

第一行包含两个正整数T,K分别表示数据组数和询问类型(对于一个测试点内的所有数据,询问类型相同)。
以下行每行包含三个正整数y,z,p,描述一个询问。

Output

对于每个询问,输出一行答案。对于询问类型2和3,如果不存在满足条件的,则输出“Orz, I cannot find x!”,注意逗号与“I”之间有一个空格。

题目分析

第一个问题:快速幂解决

第二个问题:1.转为exgcd问题   2.直接$x=Z*y^{-1}$

第三个问题:BSGS

BSGS是引入分块的思想解决形如$A^x≡B(mod\,C) C为素数$的问题(至于C不是素数就是exBSGS的范畴了)

具体来说,就是记$size=\sqrt C$,$x=i*size-j \, (0≤j<\sqrt C)$,于是式子就成了$A^{i*size}≡A^j*B$的形式。而右边这个东西是可以预处理出来放在hash表里的,这样在$\sqrt C$枚举$i$的过程中,就可以$O(1)/O(log \, n)$判断是否有相应的j了。

这类思想挺妙的,应该可以迁移到其他地方。

 #include<bits/stdc++.h>
typedef long long ll; int T,k;
ll x,y,p,w,z,d,cir;
std::map<ll, int> mp; ll qmi(ll a, ll b)
{
ll ret = ;
for (a%=p; b; b>>=, a=a*a%p)
if (b&) ret = ret*a%p;
return ret;
}
ll gcd(ll a, ll b){return !b?a:gcd(b, a%b);}
void exgcd(ll a, ll b, ll &x, ll &y)
{
if (!b){
x = , y = ;
return;
}
exgcd(b, a%b, y, x), y -= a/b*x;
}
ll BSGS(ll a, ll b, ll p)
{
if (((!b)&&(!a))) return ;
if ((!a)&&b) return -;
if (b==) return ;
ll size = ceil(sqrt(p)), bse = ;
mp.clear();
for (int i=; i<size; i++)
{
mp[bse*b%p] = i;
bse = bse*a%p;
}
for (ll i=, now=; i<=p; i+=size, now = now*bse%p)
if (mp.count(now)) return ((i-mp[now])%p+p)%p;
return -;
}
int main()
{
for (scanf("%d%d",&T,&k); T; --T)
{
scanf("%lld%lld%lld",&x,&y,&p);
if (k==) printf("%lld\n",qmi(x, y));
if (k==){
x %= p, y %= p;
if (!x) puts("Orz, I cannot find x!");
else printf("%lld\n",y*qmi(x, p-)%p);
}
if (k==){
x %= p, y %= p, d = BSGS(x, y, p);
if (d==-) puts("Orz, I cannot find x!");
else printf("%lld\n",d);
}
}
return ;
}

END

【数学 BSGS】bzoj2242: [SDOI2011]计算器的更多相关文章

  1. BZOJ2242 [SDOI2011]计算器 【BSGS】

    2242: [SDOI2011]计算器 Time Limit: 10 Sec  Memory Limit: 512 MB Submit: 4741  Solved: 1796 [Submit][Sta ...

  2. [bzoj2242][Sdoi2011]计算器_exgcd_BSGS

    计算器 bzoj-2242 Sdoi-2011 题目大意:裸题,支持快速幂.扩展gcd.拔山盖世 注释:所有数据保证int,10组数据. 想法:裸题,就是注意一下exgcd别敲错... ... 最后, ...

  3. BZOJ2242[SDOI2011]计算器——exgcd+BSGS

    题目描述 你被要求设计一个计算器完成以下三项任务: 1.给定y,z,p,计算Y^Z Mod P 的值: 2.给定y,z,p,计算满足xy≡ Z ( mod P )的最小非负整数: 3.给定y,z,p, ...

  4. bzoj2242: [SDOI2011]计算器 BSGS+exgcd

    你被要求设计一个计算器完成以下三项任务: 1.给定y,z,p,计算Y^Z Mod P 的值:(快速幂) 2.给定y,z,p,计算满足xy≡ Z ( mod P )的最小非负整数:(exgcd) 3.给 ...

  5. bzoj2242: [SDOI2011]计算器 && BSGS 算法

    BSGS算法 给定y.z.p,计算满足yx mod p=z的最小非负整数x.p为质数(没法写数学公式,以下内容用心去感受吧) 设 x = i*m + j. 则 y^(j)≡z∗y^(-i*m)) (m ...

  6. 【数论】【快速幂】【扩展欧几里得】【BSGS算法】bzoj2242 [SDOI2011]计算器

    说是BSGS……但是跟前面那题的扩展BSGS其实是一样的……因为模数虽然是质数,但是其可能可以整除a!!所以这两者其实是一样的…… 第一二种操作不赘述. #include<cstdio> ...

  7. bzoj2242 [SDOI2011]计算器——BSGS

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2242 第一次写BSGS,参考了好多好多博客: 然而看到的讲解和模板是一种写法,这道题的网上题 ...

  8. BZOJ2242 [SDOI2011]计算器

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...

  9. 2018.12.18 bzoj2242: [SDOI2011]计算器(数论)

    传送门 数论基础题. 对于第一种情况用快速幂,第二种用exgcdexgcdexgcd,第三种用bsgsbsgsbsgs 于是自己瞎yyyyyy了一个bsgsbsgsbsgs的板子(不知道是不是数据水了 ...

随机推荐

  1. 日期和时间-time时间模块

    时间的检测 #时间的检测 #导入时间模块 import time #返回当前时区与格林尼治所在时区的相差秒数(推荐) print(time.timezone) #输出结果:-28800 #返回当前时区 ...

  2. react-native-syan-image-picker的使用

    传送门 第一种方式:link 第一步:安装 1.  npm install react-native-syan-image-picker --save 2.  react-native link re ...

  3. snipaste截图软件

  4. [软件工程基础]Alpha 软件测试报告

    PhyLab Alpha 测试报告 测试中发现的bug Alpha版本限制与问题 由于接手时数据库已经丢失,这一版本主要修复了大部分数据库,使得网站得以运行. 相比接手时网站的状况,有以下改进: 恢复 ...

  5. Codeforces 1105D(双层广搜)

    要点 题意:可以拐弯,即哈密顿距离 注意不可以直接一个一个搜,这过程中会把下一轮的标记上,导致同一轮的其它点没能正常完成应有的搜索 因此采用双层广搜,把同一轮先都出队列再的一起搜 #include & ...

  6. Net Core应用,在CentOS上运行

    Net Core应用,在CentOS上运行 本文主要介绍下运用docker虚拟技术打包Asp.net core应用. Docker作为一个开源的应用容器引擎,近几年得到广泛的应用,使用Docker我们 ...

  7. java join 方法的使用

    在很多情况下,主线程创建并启动子线程,如果子线程中要进行大量的耗时运算,主线程往往将早于子线程结束之前结束.这时,如果主线程想等待子线程执行完成之后再结束,比如子线程处理一个数据,主线程要取得这个数据 ...

  8. Mysql一个表编码的坑,mark一下

    问题:一个sql执行很慢,5分钟左右,关键是最大的表是5万出头,另一张表不到5000原因:是两个表的字符集不同,导致匹配时,没有匹配到 解决办法:将两个表的字符集改成一样具体的命令: ALTER TA ...

  9. Spring Bean的一生

    Spring Bean的一生 When you work directly in Java, you can do anything you like with your objects and do ...

  10. 1126 数字统计 2010年NOIP全国联赛普及组

    1126 数字统计 2010年NOIP全国联赛普及组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 白银 Silver         题目描述 Description 请统计某个 ...