【CF711D】Directed Roads(环,强连通分量)
题意:
给一张N个点N条有向边的图,边可以逆向。问任意逆向若干条边使得这张图无环的方案数(mod 1e9+7)。
n<=200000
思路:三个样例给的好 找规律方便很多
易得有N点的环有(2^n)-2中改法,除了不改和都改
剩下的都是链,设除环外还有K个点,他们的总贡献就是2^k,因为都是一条边相连接怎么改也没有环
CF上快速幂要写在外面不然会出现奇奇怪怪的CE
const mo=;
var head,vet,next,stack,low,dfn,b,s,flag:array[..]of longint;
n,tot,i,id,time,top,x,m:longint;
ans,f,tmp:int64; procedure add(a,b:longint);
begin
inc(tot);
next[tot]:=head[a];
vet[tot]:=b;
head[a]:=tot;
end; function min(x,y:longint):longint;
begin
if x<y then exit(x);
exit(y);
end; procedure dfs(u:longint);
var e,v:longint;
begin
flag[u]:=;
inc(top); stack[top]:=u;
inc(time); dfn[u]:=time; low[u]:=time;
e:=head[u];
while e<> do
begin
v:=vet[e];
if flag[v]= then
begin
dfs(v);
low[u]:=min(low[u],low[v]);
end
else if s[v]= then low[u]:=min(low[u],low[v]);
e:=next[e];
end;
if dfn[u]=low[u] then
begin
inc(id); s[u]:=id; inc(b[id]);
while (top>)and(stack[top]<>u) do
begin
s[stack[top]]:=id;
inc(b[id]);
stack[top]:=;
dec(top);
end;
stack[top]:=; dec(top);
end;
end; begin readln(n);
for i:= to n do
begin
read(x);
add(i,x);
end;
for i:= to n do
if flag[i]= then dfs(i);
m:=;
for i:= to n do
if b[s[i]]= then m:=m+;
ans:=;
for i:= to id do
if b[i]> then
begin
f:=; tmp:=;
while b[i]> do
begin
if b[i] mod = then f:=f*tmp mod mo;
tmp:=tmp*tmp mod mo;
b[i]:=b[i] div ;
end;
ans:=(ans*(f-)) mod mo;
end;
ans:=(ans+mo) mod mo;
f:=; tmp:=;
while m> do
begin
if m mod = then f:=f*tmp mod mo;
tmp:=tmp*tmp mod mo;
m:=m div ;
end;
ans:=ans*f mod mo;
writeln(ans); end.
【CF711D】Directed Roads(环,强连通分量)的更多相关文章
- cf711D. Directed Roads(环)
题意 题目链接 \(n\)个点\(n\)条边的图,有多少种方法给边定向后没有环 Sol 一开始傻了,以为只有一个环...实际上N个点N条边还可能是基环树森林.. 做法挺显然的:找出所有的环,设第\(i ...
- codeforces 711 D.Directed Roads(tarjan 强连通分量 )
题目链接:http://codeforces.com/contest/711/problem/D 题目大意:Udayland有一些小镇,小镇和小镇之间连接着路,在某些区域内,如果从小镇Ai开始,找到一 ...
- Codeforces Round #369 (Div. 2) D. Directed Roads dfs求某个联通块的在环上的点的数量
D. Directed Roads ZS the Coder and Chris the Baboon has explored Udayland for quite some time. The ...
- HDU 3594 Cactus (强连通分量 + 一个边只能在一个环里)
题意:判断题目中给出的图是否符合两个条件.1 这图只有一个强连通分量 2 一条边只能出现在一个环里. 思路:条件1的满足只需要tarjan算法正常求强连通分量即可,关键是第二个条件,我们把对边的判断转 ...
- Codeforces Round #369 (Div. 2) D. Directed Roads —— DFS找环 + 快速幂
题目链接:http://codeforces.com/problemset/problem/711/D D. Directed Roads time limit per test 2 seconds ...
- Codeforces 711D Directed Roads - 组合数学
ZS the Coder and Chris the Baboon has explored Udayland for quite some time. They realize that it co ...
- Kosaraju算法解析: 求解图的强连通分量
Kosaraju算法解析: 求解图的强连通分量 欢迎探讨,如有错误敬请指正 如需转载,请注明出处 http://www.cnblogs.com/nullzx/ 1. 定义 连通分量:在无向图中,即为连 ...
- 强连通分量&hdu_1269&Codeforce 369D
强连通分量 标签: 图论 算法介绍 还记得割点割边算法吗.回顾一下,tarjan算法,dfs过程中记录当前点的时间戳,并通过它的子节点的low值更新它的low,low值是这个点不通过它的父亲节点最远可 ...
- 【Luogu P3387】缩点模板(强连通分量Tarjan&拓扑排序)
Luogu P3387 强连通分量的定义如下: 有向图强连通分量:在有向图G中,如果两个顶点vi,vj间(vi>vj)有一条从vi到vj的有向路径,同时还有一条从vj到vi的有向路径,则称两个顶 ...
- Tarjan算法--强连通分量
tarjan的过程就是dfs过程. 图一般能画成树,树的边有三种类型,树枝边 + 横叉边(两点没有父子关系) + 后向边(两点之间有父子关系): 可以看到只有后向边能构成环,即只有第三张图是强连通分量 ...
随机推荐
- 访问URI地址
//发送消息到服务器 public string HttpConnectToServer(string ServerPage) { byte[] dataArray = Encoding.Defaul ...
- iOS8之后,UITableViewRowAction实现滑动多个按钮
#pragma mark - View lifeCycle - (void)viewDidLoad { [super viewDidLoad]; self.view.backgroundColor = ...
- cena 测评机下载地址
以下是cane的下载地址,现在分享给你们,希望有所帮助 下载地址百度云:https://pan.baidu.com/s/1JBXiVSZy-jhIc0V-F2ESPA 密码:hgtk 点击下载即可. ...
- NOIP复习之1 数学数论
noip一轮复习真的要开始啦!!! 大概顺序是这样的 1.数学 2.搜索贪心 3.数据结构 4.图论 5.dp 6.其他 数学 1.数论 数论被称为数学皇冠上的明珠,他的重要性主要在于它是其他学习的祖 ...
- 【二分 最小割】cf808F. Card Game
Digital collectible card games have become very popular recently. So Vova decided to try one of thes ...
- 【Mysql】Mysql主从库搭建过程(爬完坑后整理所得)
Mysql主从数据库搭建流程 新手开始学习mysql主从库,遇到一些问题,总结后写出以下流程 下面以5.7.23版本为例介绍 第一步:去官网下载5.7.23版本的免安装压缩包形式的mysql文件,贴上 ...
- Voyager下的Dashboard Widgets
widgets设置,voyager.php下找到'widgets': 'widgets' => [ 'TCG\\Voyager\\Widgets\\UserDimmer', 'TCG\\Voya ...
- 消息中间件ActiveMQ及Spring整合JMS
一 .消息中间件的基本介绍 1.1 消息中间件 1.1.1 什么是消息中间件 消息中间件利用高效可靠的消息传递机制进行平台无关的数据交流,并基于数据通信来进行分布式系统的集成.通过提供消息传递和消息排 ...
- Java-basic-6-方法
命令行参数的使用 public class test { public static void main(String args[]) { for(int i = 0; i < args.len ...
- 2018 Multi-University Training Contest 10 CSGO(HDU - 6435)(最远曼哈顿距离)
有 n 种主武器,m 种副武器.每种武器有一个基础分数k种属性值 X[i] . 选出一种主武器 mw 和一种副武器 sw,使得两种武器的分数和 + 每个属性的差值尽量大.(参考下面的式子) 多维的最远 ...