Yandex.Algorithm 2011 Round 1 D. Sum of Medians 线段树
题目链接:
Sum of Medians
Time Limit:3000MSMemory Limit:262144KB
#### 问题描述
> In one well-known algorithm of finding the k-th order statistics we should divide all elements into groups of five consecutive elements and find the median of each five. A median is called the middle element of a sorted array (it's the third largest element for a group of five). To increase the algorithm's performance speed on a modern video card, you should be able to find a sum of medians in each five of the array.
>
> A sum of medians of a sorted k-element set S = {a1, a2, ..., ak}, where a1
>
> The operator stands for taking the remainder, that is stands for the remainder of dividing x by y.
>
> To organize exercise testing quickly calculating the sum of medians for a changing set was needed.
#### 输入
> The first line contains number n (1 ≤ n ≤ 105), the number of operations performed.
>
> Then each of n lines contains the description of one of the three operations:
>
> add x — add the element x to the set;
> del x — delete the element x from the set;
> sum — find the sum of medians of the set.
> For any add x operation it is true that the element x is not included in the set directly before the operation.
>
> For any del x operation it is true that the element x is included in the set directly before the operation.
>
> All the numbers in the input are positive integers, not exceeding 109.
#### 输出
> For each operation sum print on the single line the sum of medians of the current set. If the set is empty, print 0.
>
> Please, do not use the %lld specificator to read or write 64-bit integers in C++. It is preferred to use the cin, cout streams (also you may use the %I64d specificator).
#### 样例
> **sample input**
> 14
> add 1
> add 7
> add 2
> add 5
> sum
> add 6
> add 8
> add 9
> add 3
> add 4
> add 10
> sum
> del 1
> sum
>
> **sample output**
> 5
> 11
> 13
题意
求当前有序集合中所有下标%5==3的数字的和。
题解
对于一个区间,我们可以维护相对的%5=x的位置,比如对于区间[a,a],那它%5为1的数为val[a],其他的都为0,这样我们在合并的时候左边的%5==x的位置是不会变的,右边的只要看左边有多少个数就知道要用x’(偏移)取和x合并了。
代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#define lson (o<<1)
#define rson ((o<<1)|1)
#define M l+(r-l)/2
using namespace std;
const int maxn = 1e5 + 10;
typedef __int64 LL;
LL sumv[maxn << 2][5];
int cntv[maxn << 2];
int n;
char cmd[maxn][11];
int val[maxn];
vector<int> ha;
void maintain(int o) {
cntv[o] = cntv[lson] + cntv[rson];
for (int i = 0; i < 5; i++) {
sumv[o][i] = sumv[lson][i] + sumv[rson][((i - cntv[lson]) % 5 + 5) % 5];
}
}
int _p,_type;
void update(int o, int l, int r) {
if (l==r) {
if (_type =='d') {
sumv[o][1] = 0;
cntv[o] = 0;
}
else {
sumv[o][1] = ha[l - 1];
//printf("(%d,%d):%d", l);
cntv[o] = 1;
}
}
else {
if (_p <= M) update(lson, l, M);
else update(rson, M + 1, r);
maintain(o);
}
}
int main() {
scanf("%d", &n);
memset(sumv, 0, sizeof(sumv));
memset(cntv, 0, sizeof(cntv));
for (int i = 0; i < n; i++) {
scanf("%s", cmd[i]);
if (cmd[i][0] != 's') {
scanf("%d", &val[i]);
ha.push_back(val[i]);
}
}
sort(ha.begin(), ha.end());
ha.erase(unique(ha.begin(), ha.end()),ha.end());
for (int i = 0; i < n; i++) {
if (cmd[i][0] !='s') {
_p = lower_bound(ha.begin(), ha.end(), val[i]) - ha.begin() + 1;
_type = cmd[i][0];
update(1, 1, n);
}
else {
printf("%I64d\n", sumv[1][3]);
}
}
return 0;
}
乱起八糟
线段树是递归的思想,所以它区间保存的数据不能是绝对的!只能是相对的!是只对当前这个区间定义的!而不是对整个区间定义的!所以,如果你想用子节点来表示在全局中%5是什么情况,可能就会比较麻烦了吧。
Yandex.Algorithm 2011 Round 1 D. Sum of Medians 线段树的更多相关文章
- codeforces 85D D. Sum of Medians 线段树
D. Sum of Medians time limit per test 3 seconds memory limit per test 256 megabytes input standard i ...
- Codeforces 85D Sum of Medians(线段树)
题目链接:Codeforces 85D - Sum of Medians 题目大意:N个操作,add x:向集合中加入x:del x:删除集合中的x:sum:将集合排序后,将集合中全部下标i % 5 ...
- CodeForces 86D(Yandex.Algorithm 2011 Round 2)
思路:莫队算法,离线操作,将所有询问的左端点进行分块(分成sqrt(n) 块每块sqrt(n)个),用左端点的块号进行排序小的在前,块号相等的,右端点小的在前面. 这样要是两个相邻的查询在同一块内左端 ...
- Yandex.Algorithm 2011 Round 2 D. Powerful array 莫队
题目链接:点击传送 D. Powerful array time limit per test 5 seconds memory limit per test 256 megabytes input ...
- codeforces 1217E E. Sum Queries? (线段树
codeforces 1217E E. Sum Queries? (线段树 传送门:https://codeforces.com/contest/1217/problem/E 题意: n个数,m次询问 ...
- 【Educational Codeforces Round 37】F. SUM and REPLACE 线段树+线性筛
题意 给定序列$a_n$,每次将$[L,R]$区间内的数$a_i$替换为$d(a_i)$,或者询问区间和 这题和区间开方有相同的操作 对于$a_i \in (1,10^6)$,$10$次$d(a_i) ...
- 【BZOJ4262】Sum 单调栈+线段树
[BZOJ4262]Sum Description Input 第一行一个数 t,表示询问组数. 第一行一个数 t,表示询问组数. 接下来 t 行,每行四个数 l_1, r_1, l_2, r_2. ...
- hdu 5195 DZY Loves Topological Sorting BestCoder Round #35 1002 [ 拓扑排序 + 优先队列 || 线段树 ]
传送门 DZY Loves Topological Sorting Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 131072/131 ...
- HDU5638 / BestCoder Round #74 (div.1) 1003 Toposort 线段树+拓扑排序
Toposort 问题描述 给出nn个点mm条边的有向无环图. 要求删掉恰好kk条边使得字典序最小的拓扑序列尽可能小. 输入描述 输入包含多组数据. 第一行有一个整数TT, 表示测试数据组数. 对 ...
随机推荐
- Custom Sort Order
When trying to sort based on values that do not fit the standard ascending and descending sort logic ...
- Html辅助方法(分页、下拉框)
引用命名空间: using System.Text; using System.Web.Mvc; Html分页方法 #region 分页Html辅助方法 /// <summary> /// ...
- MongoDb 2.4 beta新特性——全文索引
期待已久的特性,但目前仍然在beta阶段,所以官方建议不要在生产环境使用.也因此需要手动打开这个特性. 在命令行指定 mongod --setParameter textSearchEnabled=t ...
- php5.5新函数array_column
php5.5新增了一个新的数组函数,感觉挺使用的,低版本的实现按照如下实现 if(!function_exists('array_column')){ function array_column($i ...
- sql 子查询要命名
Date1 from ( select distinct Date1 from TableName where Date1 > '2013-5-1' )A --这里加个A,B,C随便你 或者as ...
- VM虚拟机无法拖拽、粘贴、复制
VM无法从客户机拖放/复制文件到虚拟机的解决办法: 将这两项取消勾选,点击[确定].再次打开,勾选,点击[确定] 原因分析:可能是VM中默认是不支持该功能的,但是在配置窗体上确实默认打钩打上的. 依据 ...
- Python之路-(三级菜单)
data = { '北京':{ '海淀':{ '五道口':{ 'soho':{}, '网易':{}, 'google':{} }, '中关村':{ '爱奇艺':{}, '汽车之家':{}, 'youk ...
- 刀哥多线程现操作gcd-10-delay
延迟操作 // MARK: - 延迟执行 - (void)delay { /** 从现在开始,经过多少纳秒,由"队列"调度异步执行 block 中的代码 参数 1. when 从现 ...
- [转]PROC简单使用用例--VC连接ORACLE
[转]PROC简单使用用例--VC连接ORACLE 操作系统:windows 7 数据库版本:oracle 10g VS版本:VS2010 前言:连接ORACLE的方式有很多,此处仅以PROC为例,说 ...
- Base
base 关键字用于从派生类中访问基类的成员: 调用基类上已被其他方法重写的方法. 指定创建派生类实例时应调用的基类构造函数. 基类访问只能在构造函数.实例方法或实例属性访问器中进行. 从静态方法中使 ...