题目链接:http://poj.org/problem?id=3104                  
                                                                                   Drying
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 11128   Accepted: 2865

Description

It is very hard to wash and especially to dry clothes in winter. But Jane is a very smart girl. She is not afraid of this boring process. Jane has decided to use a radiator to make drying faster. But the radiator is small, so it can hold only one thing at a time.

Jane wants to perform drying in the minimal possible time. She asked you to write a program that will calculate the minimal time for a given set of clothes.

There are n clothes Jane has just washed. Each of them took ai water during washing. Every minute the amount of water contained in each thing decreases by one (of course, only if the thing is not completely dry yet). When amount of water contained becomes zero the cloth becomes dry and is ready to be packed.

Every minute Jane can select one thing to dry on the radiator. The radiator is very hot, so the amount of water in this thing decreases by k this minute (but not less than zero — if the thing contains less than k water, the resulting amount of water will be zero).

The task is to minimize the total time of drying by means of using the radiator effectively. The drying process ends when all the clothes are dry.

Sample Input

sample input #1
3
2 3 9
5 sample input #2
3
2 3 6
5

Sample Output

sample output #1
3 sample output #2
2 题意: 有n件湿衣服, 现在要把它们烘干(或自然风干), 已知烘干机的效率是每分钟 k 的水分。 自然风干是每分钟 1 的水分。
求最短的烘干时间(整数)。
分析: 0 时间内一定不能烘干。 MAX(水分最多的自然风干用时) 的时间一定能烘干(因为不用烘干,也能风干) 假设 用时 mid 则:
如果a[i]<=mid自然风干就行啦, 如果 a[i]>mid 就要用到烘干机, 假设用 x分钟的烘干机, 则需要满足a[i]-k*x<=mid-x
得出x = ceil(a[i]-mid)/(k-1) 【其中ceil是向上取整的函数,包含在cmath头文件里】 得出各个衣服所需要的烘干时间x,
然后加起来等于res 如果res<mid 则减小mid(用二分法), 否则增大mid。直到求出正确答案。细节详见代码! 二分答案方法的要求:
《1》 能够确定出答案所在的范围。
《2》 答案有在范围内的单调性
《3》 答案是整数(或有一定的精度要求), 而不是十分精确的实数。
二分答案的时间复杂度是logN。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std; int n, a[], k;
bool check(int mid)
{
long long res = ;
for(int i=; i<n; i++)
{
if(a[i]>mid)
{
res+=(int)ceil((double)(a[i]-mid)/(k-));
}
}
return res<=mid;
} int main()
{
while(scanf("%d", &n)!=EOF)
{
int Max=;
for(int i=; i<n; i++)
{
scanf("%d", &a[i]);
if(a[i]>Max) Max=a[i];
}
scanf("%d", &k);
if(k==)
{
printf("%d\n", Max);
continue;
}
int left = , right = Max, mid;
while(right>=left)
{
mid = (right+left)>>;
if(check(mid)) right = mid-;
else left = mid+;
}
printf("%d\n", left);
}
return ;
}
 

POJ 3104 Drying(二分答案)的更多相关文章

  1. POJ 3104 Drying 二分

    http://poj.org/problem?id=3104 题目大意: 有n件衣服,每件有ai的水,自然风干每分钟少1,而烘干每分钟少k.求所有弄干的最短时间. 思路: 注意烘干时候没有自然风干. ...

  2. POJ 3104 Drying [二分 有坑点 好题]

    传送门 表示又是神题一道 Drying Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 9327   Accepted: 23 ...

  3. POJ 3104 Drying (二分+精度)

    题目链接:click here~~ [题目大意]: 题意:有一些衣服,每件衣服有一定水量,有一个烘干机,每次能够烘一件衣服,每分钟能够烘掉k单位水. 每件衣服没分钟能够自己主动蒸发掉一单位水, 用烘干 ...

  4. POJ 3104 Drying (经典)【二分答案】

    <题目链接> 题目大意: 有一些衣服,每件衣服有一定水量,有一个烘干机,每次可以烘一件衣服,每分钟可以烘掉k滴水.每件衣服没分钟可以自动蒸发掉一滴水,用烘干机烘衣服时不蒸发.问最少需要多少 ...

  5. POJ 3122 Pie 二分答案

    题意:给你n个派,每个派都是高为一的圆柱体,把它等分成f份,每份的最大体积是多少. 思路: 明显的二分答案题-- 注意π的取值- 3.14159265359 这样才能AC,,, //By Sirius ...

  6. POJ 3104 Drying(二分答案)

    [题目链接] http://poj.org/problem?id=3104 [题目大意] 给出n件需要干燥的衣服,烘干机能够每秒干燥k水分, 不在烘干的衣服本身每秒能干燥1水分 求出最少需要干燥的时间 ...

  7. poj 3104 Drying(二分查找)

    题目链接:http://poj.org/problem?id=3104 Drying Time Limit: 2000MS   Memory Limit: 65536K Total Submissio ...

  8. POJ 3104 Drying(二分

    Drying Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 22163   Accepted: 5611 Descripti ...

  9. poj 3104 Drying(二分搜索之最大化最小值)

    Description It is very hard to wash and especially to dry clothes in winter. But Jane is a very smar ...

随机推荐

  1. 如何查看Linux操作系统版本

    1. 查看内核版本命令: 360kb.com:~> cat /proc/version Linux version 2.6.32-358.el6.x86_64 (mockbuild@c6b8.b ...

  2. 霸气的jQ插件

    http://codepen.io/ canvas的各种实例 1.The Responsive jQuery Content Slider http://bxslider.com/ 2.ThemePu ...

  3. Spring+Quartz实现定时执行任务的配置

    1.要想使用Quartz 必须要引入相关的包:以下是我在项目中gradle中的配置: compile 'org.quartz-scheduler:quartz:2.1.1' 2.Scheduler的配 ...

  4. File和URL的getPath()方法区别

    java.io.File对象的getPath()方法返回文件的全路径名.如果是目录返回目录路径且结尾没有"\".如果是文件包含文件名. java.io.File对象的getName ...

  5. 表单校验组件ValidForm

    10.1使用入门 1.引入css 请查看下载文件中的style.css,把里面Validform必须部分复制到你的css中 (文件里这个注释 "/*==========以下部分是Validf ...

  6. 第十二届浙江省大学生程序设计大赛-Lunch Time 分类: 比赛 2015-06-26 14:30 5人阅读 评论(0) 收藏

    Lunch Time Time Limit: 2 Seconds Memory Limit: 65536 KB The 999th Zhejiang Provincial Collegiate Pro ...

  7. Cimg代码初探

    Cimg代码初探     程序设计最为激动人心的地方,在于丰富的并且容易被查阅到资料.比如对于图像处理,固然有Opencv等较为丰富.被广泛知晓的类库:也有其他很多具有一定特色的类库.在这段时间里面, ...

  8. Intent官方教程(2)Intent的两种类型

    Intent Types There are two types of intents: Explicit intents specify the component to start by name ...

  9. MySQL中别名的使用

    MySQL中别名的使用 为数据列或者表达式起别名时,别名紧跟数据列,中间以空格隔开,或者用关键字as隔开. #为表达式起别名 使用as关键字隔开 as T_ID from teacher_table; ...

  10. GCD之dispatch queue深入浅出

    GCD之dispatch queue深入浅出 http://blog.csdn.net/samuelltk/article/details/9452203