题意:求
\[
\sum_{i=0}^n[k|i]\binom{n}{i}Fib(i)
\]
斐波那契数列有简单的矩阵上的通项公式\(Fib(n)=A^n_{1,1}\)。代入得
\[
=\sum_{i=0}^n[k|i]\binom{n}{i}A^i_{1,1}
\]
由单位根反演,
\[
=\sum_{i=0}^n\frac{1}{k}\sum_{j=0}^{k-1}w_k^{ij}\binom{n}{i}A^i_{1,1}
\]
注意到后面多项与\(i\)有关,考虑将\(i\)贬到后面去。
\[
=\frac{1}{k}\sum_{j=0}^{k-1}\sum_{i=0}^n(w_k^j)^i\binom{n}{i}A^i_{1,1}
\]
二项式定理描述为\((a+b)^n=\sum_{i=0}^n\binom{n}{i}a^ib^{n-i}\),右侧形式的要点在于卷积和组合数。因此式子可化为
\[
=\frac{1}{k}\sum_{j=0}^{k-1}(w_k^{-j-n}(A+w_k^{-j}I)^n)_{1,1}
\]
后面可快速幂计算。

2019.4.21注:都提到“反演”了显然是计数(组合)内容啊

BZOJ3328 PYXFIB 单位根反演的更多相关文章

  1. bzoj 3328 PYXFIB —— 单位根反演

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3328 单位根反演,主要用到了 \( [k|n] = \frac{1}{k} \sum\lim ...

  2. bzoj 3328 PYXFIB——单位根反演

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3328 单位根反演主要就是有 \( [k|n] = \frac{1}{k}\sum\limit ...

  3. BZOJ 3328: PYXFIB 单位根反演+矩阵乘法+二项式定理

    如果写过 LJJ 学二项式那道题的话这道题就不难了. #include <bits/stdc++.h> #define ll long long #define setIO(s) freo ...

  4. 【BZOJ3328】PYXFIB(单位根反演,矩阵快速幂)

    [BZOJ3328]PYXFIB(单位根反演,矩阵快速幂) 题面 BZOJ 题解 首先要求的式子是:\(\displaystyle \sum_{i=0}^n [k|i]{n\choose i}f_i\ ...

  5. bzoj3328: PYXFIB(单位根反演+矩阵快速幂)

    题面 传送门 题解 我们设\(A=\begin{bmatrix}1 & 1 \\ 1 & 0\end{bmatrix}\),那么\(A^n\)的左上角就是\(F\)的第\(n\)项 所 ...

  6. UOJ#450. 【集训队作业2018】复读机 排列组合 生成函数 单位根反演

    原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ450.html 题解 首先有一个东西叫做“单位根反演”,它在 FFT 的时候用到过: $$\frac 1 ...

  7. POJChallengeRound2 Guideposts 【单位根反演】【快速幂】

    题目分析: 这题的目标是求$$ \sum_{i \in [0,n),k \mid i} \binom{n}{i}G^i $$ 这个形式很像单位根反演. 单位根反演一般用于求:$ \sum_{i \in ...

  8. 【做题】UOJ450 - 复读机——单位根反演

    原文链接 https://www.cnblogs.com/cly-none/p/UOJ450.html 题意:请自行阅读. 考虑用生成函数来表示答案.因为秒之间是有序的,所以这应当是个指数生成函数.故 ...

  9. 【UOJ#450】【集训队作业2018】复读机(生成函数,单位根反演)

    [UOJ#450][集训队作业2018]复读机(生成函数,单位根反演) 题面 UOJ 题解 似乎是\(\mbox{Anson}\)爷的题. \(d=1\)的时候,随便怎么都行,答案就是\(k^n\). ...

随机推荐

  1. arcgis10.0的ArcGIS Services Directory显示401,需要身份验证,访问被拒绝,rest/services需要输入用户名和密码

    大家好! 这个错误我也不想说什么,主要是应公司开发需求,从自己的arcgis10.2的版本改为arcgis10.0的版本,装完之后遇到一个错误,老是显示访问被拒绝,我也是找了很多的方式,没有在网上找到 ...

  2. wpf 无缝滚动

    很早以前有项目就需要文字无缝滚动的效果但无奈当时技术不到位 人也比较懒惰(大概程序猿都是这个样子吧) 此方法并非只文字无缝其实任何内容都可以 <ScrollViewer Name="s ...

  3. LIMIT与OFFSET的使用

    limit 与 offset:从下标0开始 offset X   是跳过X个数据 limit Y      是选取Y个数据 limit  X,Y  中X表示跳过X个数据,读取Y个数据 例如: sele ...

  4. springboot之mybatis注解形式

    springboot整合mybatis对数据库进行访问,本实例采用注解的方式,如下: pom.xml文件 <parent> <groupId>org.springframewo ...

  5. Adaptive Placeholders

    https://wisdmlabs.com/blog/create-adaptive-placeholders-using-css/ https://circleci.com/blog/adaptiv ...

  6. 轨迹系列7——Socket总结及实现基于TCP或UDP的809协议方法

    文章版权由作者李晓晖和博客园共有,若转载请于明显处标明出处:http://www.cnblogs.com/naaoveGIS/ 1.背景 在上一篇博客中我详细介绍了809协议的内容.809协议规范了通 ...

  7. Pycharm使用技巧(转载)

    Pycharm使用技巧(转载) 转载自:http://www.cnblogs.com/cloudtj/articles/5980666.html pycharm使用技巧 https://python. ...

  8. MyBatis批量修改操作

    1.需求 后台管理页面,查询频道列表,需要批量修改频道的状态,批量上线和下线 2.MyBatis配置 这是mysql的配置,注意需要加上&allowMultiQueries=true配置 jd ...

  9. sql server 临时表(上) Tempdb概述

    一.概述 在sql server里临时表存储在TempDB库中,TempDB是一个系统数据库,它只有Simple恢复模式,也是最小日志记录操作.主要用于存放局部临时表,全局临时表,表变量,都是基于临时 ...

  10. 安装ESXi部署OVF详细步骤

    整个安装部署过程均在个人环境进行.欧克,我们现在开始. 一.安装ESXi 1.Enter回车 2.Enter回车继续 3.F11,接受继续 4.Enter,回车继续(选择安装ESXi的设备) 5.默认 ...