Learning regression and verification networks for long-term visual tracking

2019-02-18 22:12:25

Paper:https://arxiv.org/abs/1809.04320

Code:https://github.com/xiaobai1217/MBMD

一、文章动机

本文是为了更好的处理长期跟踪问题,而提出一种结合 Regression 和 Classification Network 的跟踪方法。因为常规的视觉跟踪依赖于 Tracking-by-detection 框架,这种框架自带的局部搜索机制无法很好的处理快速运动,目标的完全消失等挑战性因素。所以,如何针对这些问题,设计基于全局的搜索机制是一个非常值得研究的问题。本文也采用了 Local 和 Global search 相结合的策略,来处理这一问题。

二、跟踪流程

整体的流程图如上图所示, 主要包含 Regression Network 和 Verification Network。其中回归网络的作用主要是特征提取+候选框产生;而验证网络的作用是为了提供更好的打分依据(基于 MDNet 强大的判别能力)。

1. Regression Network

该网络采用 SSD 检测框架以及 MobileNet 为特征提取器。两路网络共享相同的网络结构。由于 Search Region 和 Template 的大小并不一致,所以这里会有两个 feature map 输出。这两个 feature map 将会进行融合,输入到 RPN 网络中。融合的过程如下图所示:

经过 RPN 之后,再利用 NMS 进行 BBox 的筛选,得到候选框。在上述过程中,很自然的有如下的疑问:为什么要将 Template 和 Search Region 进行融合?这里作者给出的解释是:to provide the region proposal networks with representative features of the search region。相当于简单的进行了一次 Siamese FC 的操作,得到了目标物体的响应图。这样,RPN 网络更容易进行 Proposal 的生成(or 生成高质量的 Proposal)。

2. Verification Network

有了上述产生的候选框,紧接着引入分类网络进行候选框的打分。这里就是将上述 proposal 输入到一个分类网络中,得到是前景还是背景的得分。

3. Tracking Strategy

如果是基于 Tracking-by-detection framework,已经可以进行跟踪了,并且可以取得还不错的效果。但是,Local 的搜索机制无法很好的处理上述提到的 短暂消失等问题。所以,作者这里采用阈值控制法,即,根据是否阈值的高低,来推测当前帧是否发生了物体完全消失的情况,实现 Local search 和 Global search 的切换。Global Proposal 产生的方法也是基于滑动窗口的方式进行的。该阈值的计算方式如下(由 Regression 和 Verification 的结果共同决定):

三、实验结果

四、总结:
本文针对 Long-term Tracking 设计的思路,但是短暂消失,物体的突变等因素引起的问题,在常规的 Visual Tracking 中也是存在的。而且,文章采用了较为粗暴的滑动窗口的方式进行 Global Proposal 的产生,这可能导致在多个相似目标出现时,导致跟踪失败。因为此时的 BBox 可能就跑到其他类似物体上去了。这也是跟踪算法与真正的智能跟踪算法最具有差异性的地方。如何提取更加高质量的 Proposal,请参考我们最新提出的目标驱动的全局搜索方法:Describe and Attend to Track: Learning Natural Language guided Structural Representation and Visual Attention for Object Tracking

论文笔记:Learning regression and verification networks for long-term visual tracking的更多相关文章

  1. 论文笔记:目标追踪-CVPR2014-Adaptive Color Attributes for Real-time Visual Tracking

    基于自适应颜色属性的目标追踪 Adaptive Color Attributes for Real-Time Visual Tracking 基于自适应颜色属性的实时视觉追踪 3月讲的第一篇论文,个人 ...

  2. 论文笔记 — Learning to Compare Image Patches via Convolutional Neural Networks

    论文: 引入论文中的一句话来说明对比图像patches的重要性,“Comparing patches across images is probably one of the most fundame ...

  3. 论文笔记之:Graph Attention Networks

    Graph Attention Networks 2018-02-06  16:52:49 Abstract: 本文提出一种新颖的 graph attention networks (GATs), 可 ...

  4. 论文笔记——MobileNets(Efficient Convolutional Neural Networks for Mobile Vision Applications)

    论文地址:MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications MobileNet由Go ...

  5. 论文笔记之:Fully-Convolutional Siamese Networks for Object Tracking

    gansh Fully-Convolutional Siamese Network for Object Tracking 摘要:任意目标的跟踪问题通常是根据一个物体的外观来构建表观模型.虽然也取得了 ...

  6. 【论文笔记】Training Very Deep Networks - Highway Networks

    目标: 怎么训练很深的神经网络 然而过深的神经网络会造成各种问题,梯度消失之类的,导致很难训练 作者利用了类似LSTM的方法,通过增加gate来控制transform前和transform后的数据的比 ...

  7. 论文笔记(2)-Dropout-Regularization of Neural Networks using DropConnect

    这篇paper使用DropConnect来规则化神经网络.dropconnect和dropout的区别如下图所示.dropout是随机吧隐含层的输出清空,而dropconnect是input unit ...

  8. Learning to Track at 100 FPS with Deep Regression Networks ECCV 2016 论文笔记

    Learning to Track at 100 FPS with Deep Regression Networks   ECCV 2016  论文笔记 工程网页:http://davheld.git ...

  9. 论文笔记之:Action-Decision Networks for Visual Tracking with Deep Reinforcement Learning

    论文笔记之:Action-Decision Networks for Visual Tracking with Deep Reinforcement Learning  2017-06-06  21: ...

随机推荐

  1. tfs权限设置

    需求,管理员用户可以看到tfs里面的所有项目,现在需要给某个开发人员设置权限,只让其看到其中某一个项目. 一.tfs服务器设置 1.在服务器管理器中的[本地用户和组]中添加一个新用户,并在“组”将新用 ...

  2. HDU 1754 线段树入门解题报告

    ---恢复内容开始--- 题意:给定区间,每个人的成绩, Q次询问,求每次询问区间中的最大值 思路:构造线段树 代码: #include<stdio.h> #include<algo ...

  3. 2019-04-15 Python之利用matplotlib和numpy的简单绘图

    环境:win10家庭版, Anocada的 Spyder 一.简单使用 使用函数 plt.polt(x,y,label,color,width) 根据x,y 数组 绘制直,曲线 import nump ...

  4. 怎么eclipse或MyEclipse中添加javaSe的源码

    怎么eclipse或MyEclipse中添加javaSe的源码 有时在eclipse里我们调用java提供给我们的方法,我们有时需要查看java提供给我们的调用方法的源码或java提供给我们的核心类的 ...

  5. 3.1.4 Spring的事务管理

    四.Spring的事务管理 事务原本是数据库中的概念, 在Dao层. 但一般情况下, 需要将事务提升到 业务层, 即Service层. 这样做是为了 能够使用事务的特性来管理具体的业务. 1. Spr ...

  6. HRY and codefire

    传送门: 设 dp[i][j]为第一个号i等级,第二个号j等级的期望值 a[i]存每个等级上分的概率 dp[i][j]=a[i]*dp[i+1][j]+(1-a[i])*dp[j][i]+1 dp[j ...

  7. cocos2d-x C++ 获取网络图片缓存并展示

    #ifndef __HttpGetImg__ #define __HttpGetImg__ #include "cocos2d.h" #include "HttpRequ ...

  8. 1.1大数据平台架构及Hadoop生态圈

    1.硬件架构实例 2.软件架构实例 3.数据流通用概念模型 a.数据源(互联网.物联网.企业数据):App.Device.Site b.数据收集(ETL.提取.转换.加载):Flume.Kafka.S ...

  9. 群晖IP地址更新问题

    系统:黑群晖  DS3615 事件:初始安装后 会自动获取一个IP地址,各项功能正常,由于网络调整,更换了路由,群晖宿主机链接到了二级路由(交换机模式) 问题: 1.使用原始的IP无法访问到群晖服务 ...

  10. mysql 5.7 配置文件说明

    1.配置文件样例 [client] #password= socket=/data/var/mysql/mysql.sock [mysqld_safe] pid-file=/data/var/mysq ...