试证明: 当流场为无旋, 即 $\rot{\bf u}={\bf 0}$ 时, 理想流体的 Euler 方程可写为如下形式: $$\bex \cfrac{\p {\bf u}}{\p t}+\n \cfrac{u^2}{2}+\cfrac{1}{\rho}\n p={\bf F}. \eex$$

证明: 仅须注意到 $$\bex ({\bf u}\cdot\n){\bf u}=\Div({\bf u}\otimes{\bf u})= (\Div{\bf u}){\bf u}+\rot{\bf u}\times {\bf u}+\cfrac{1}{2}\n u^2=\n\cfrac{u^2}{2}. \eex$$

[物理学与PDEs]第2章习题1 无旋时的 Euler 方程的更多相关文章

  1. [物理学与PDEs]第5章习题7 各向同性材料时稳定性条件的等价条件

    在线性弹性时, 证明各向同性材料, 稳定性条件 (5. 27) 等价于 Lam\'e 常数满足 $$\bex \mu>0,\quad \lm+\cfrac{2}{3}\mu>0.  \ee ...

  2. [物理学与PDEs]第5章习题6 各向同性材料时强椭圆性条件的等价条件

    在线性弹性时, 证明各向同性材料, 强椭圆性条件 (5. 6) 等价于 Lam\'e 常数满足 $$\bex \mu>0,\quad \lm+2\mu>0.  \eex$$ 证明: (1) ...

  3. [物理学与PDEs]第2章习题6 有旋的 Navier-Stokes 方程组

    试证明: 由 Navier-Stokes 方程组描述的流体运动一般总是有旋的, 即若 $\rot{\bf u}={\bf 0}$, 则 Navier-Stokes 方程组 (3. 4)-(3. 5) ...

  4. [物理学与PDEs]第2章习题参考解答

    [物理学与PDEs]第2章习题1 无旋时的 Euler 方程 [物理学与PDEs]第2章习题2 质量力有势时的能量方程 [物理学与PDEs]第2章习题3 Laplace 方程的 Neumann 问题 ...

  5. [物理学与PDEs]第5章习题参考解答

    [物理学与PDEs]第5章习题1 矩阵的极分解 [物理学与PDEs]第5章习题2 Jacobian 的物质导数 [物理学与PDEs]第5章习题3 第二 Piola 应力张量的对称性 [物理学与PDEs ...

  6. [物理学与PDEs]第1章习题参考解答

    [物理学与PDEs]第1章习题1 无限长直线的电场强度与电势 [物理学与PDEs]第1章习题2 均匀带电球面的电场强度与电势 [物理学与PDEs]第1章习题3 常场强下电势的定解问题 [物理学与PDE ...

  7. [物理学与PDEs]第3章习题参考解答

    [物理学与PDEs]第3章习题1 只有一个非零分量的磁场 [物理学与PDEs]第3章习题2 仅受重力作用的定常不可压流理想流体沿沿流线的一个守恒量 [物理学与PDEs]第3章习题3电磁场的矢势在 Lo ...

  8. [物理学与PDEs]第4章习题参考解答

    [物理学与PDEs]第4章习题1 反应力学方程组形式的化约 - 动量方程与未燃流体质量平衡方程 [物理学与PDEs]第4章习题2 反应力学方程组形式的化约 - 能量守恒方程 [物理学与PDEs]第4章 ...

  9. [物理学与PDEs]第4章习题4 一维理想反应流体力学方程组的守恒律形式及其 R.H. 条件

    写出在忽略粘性与热传导性, 即设 $\mu=\mu'=\kappa=0$ 的情况, 在 Euler 坐标系下具守恒律形式的一维反应流动力学方程组. 由此求出在解的强间断线上应满足的 R.H. 条件 ( ...

随机推荐

  1. 一个小错误:error LNK2019: 无法解析的外部符号 "public: __thiscall Turtle::~Turtle(void)" (??1Turtle@@QAE@XZ),该符号在函数 _main 中被引用

    昨天在撸代码的时候遇到了一个十分蛋疼的错误 : 错误: 1>3.obj : error LNK2019: 无法解析的外部符号 "public: __thiscall Turtle::~ ...

  2. 【Python使用】使用pip安装卸载Python包(含离线安装Python包)未完成???

    pip 是 Python 包管理工具,该工具提供了对Python包的查找.下载.安装.卸载的功能.Python 2.7.9 + 或 Python 3.4+ 以上版本都自带 pip 工具. pip使用( ...

  3. springMVC框架核心方法调用源码解析

  4. eclipse 创建springboot项目

    eclipse创建springboot项目的三种方法: 引自:https://blog.csdn.net/mousede/article/details/81285693

  5. PHP命令执行与防范

    命令执行漏洞是指攻击者可以随意执行系统命令,是高危漏洞之一. 命令连接符:&  &&   ||     | 如:ping www.baidu.com && ne ...

  6. STM32F40G-EVAL_UC/OS III

    micrum官网下载uc/os程序包: 包含文件cotex_M4.h:

  7. 深入理解 Java 基本数据类型

    深入理解 Java 基本数据类型

  8. java遍历复杂json字符串获取想要的数据

    https://blog.csdn.net/qq_34309663/article/details/80508125 java如何解析复杂的json数据关于json处理的包有好几个,比如jackson ...

  9. C#中的虚函数及继承关系

    转载:http://blog.csdn.net/suncherrydream/article/details/8423991 若一个实例方法声明前带有virtual关键字,那么这个方法就是虚方法. 虚 ...

  10. AtCoder Beginner Contest 122 D - We Like AGC(DP)

    题目链接 思路自西瓜and大佬博客:https://www.cnblogs.com/henry-1202/p/10590327.html#_label3 数据范围小 可直接dp f[i][j][a][ ...