[物理学与PDEs]第5章习题5 超弹性材料中客观性假设的贮能函数表达
设超弹性材料的贮能函数 $\hat W$ 满足 (4. 19) 式, 证明由它决定的 Cauchy 应力张量 ${\bf T}$ 满足各向同性假设 (4. 7) 式.
证明: 若贮能函数 $W$ 满足 ``$\hat W({\bf F}{\bf Q})=W({\bf F})$ 对任意正交阵 ${\bf Q}$'', 则 $$\beex \bea p_{ij}({\bf F})&=\cfrac{\p \hat W({\bf F})}{\p f_{ij}}\\ &=\cfrac{\p \hat W({\bf F}{\bf Q})}{\p f_{ij}}\\ &=\sum_{m,n}\cfrac{\p \hat W({\bf F}{\bf Q})}{\p z_{mn}}\cfrac{\p z_{mn}}{\p f_{ij}}\quad\sex{{\bf Z}={\bf F}{\bf Q}}\\ &=\sum_{m,n}p_{mn}({\bf F}{\bf Q})q_{jn}\delta_{mi}\\ &\quad\sex{z_{mn}=\sum_l f_{ml}q_{ln}\ra \cfrac{\p z_{mn}}{\p f_{ij}}=q_{jn}\delta_{mi}}\\ &=\sum_n p_{in}({\bf F}{\bf Q})q_{jn}. \eea \eeex$$ 于是 $$\bex {\bf P}({\bf F})={\bf P}({\bf F}{\bf Q}){\bf Q}^T. \eex$$ 又由 Piola 应力张量的定义 ${\bf P}=J\hat {\bf T}{\bf F}^{-T}$ 知 $$\beex \bea \hat {\bf T}({\bf F}){\bf F}^{-T}&=\hat{\bf T}({\bf F}{\bf Q})({\bf F}{\bf Q})^{-T}{\bf Q}^T\\ &=\hat{\bf F}({\bf F}{\bf Q}){\bf F}^{-T},\\ {\bf T}({\bf F})&=\hat{\bf T}({\bf F}{\bf Q}). \eea \eeex$$
[物理学与PDEs]第5章习题5 超弹性材料中客观性假设的贮能函数表达的更多相关文章
- [物理学与PDEs]第5章习题参考解答
[物理学与PDEs]第5章习题1 矩阵的极分解 [物理学与PDEs]第5章习题2 Jacobian 的物质导数 [物理学与PDEs]第5章习题3 第二 Piola 应力张量的对称性 [物理学与PDEs ...
- [物理学与PDEs]第5章习题7 各向同性材料时稳定性条件的等价条件
在线性弹性时, 证明各向同性材料, 稳定性条件 (5. 27) 等价于 Lam\'e 常数满足 $$\bex \mu>0,\quad \lm+\cfrac{2}{3}\mu>0. \ee ...
- [物理学与PDEs]第5章习题6 各向同性材料时强椭圆性条件的等价条件
在线性弹性时, 证明各向同性材料, 强椭圆性条件 (5. 6) 等价于 Lam\'e 常数满足 $$\bex \mu>0,\quad \lm+2\mu>0. \eex$$ 证明: (1) ...
- [物理学与PDEs]第1章习题11 各向同性导体中电荷分布的指数衰减
在各向同性的导体中, Ohm 定律具有如下形式: $$\bex {\bf j}=\sigma {\bf E}, \eex$$ 其中 $\sigma$ 称为电导率. 试证在真空中导体的连续性方程为 $$ ...
- [物理学与PDEs]第1章习题参考解答
[物理学与PDEs]第1章习题1 无限长直线的电场强度与电势 [物理学与PDEs]第1章习题2 均匀带电球面的电场强度与电势 [物理学与PDEs]第1章习题3 常场强下电势的定解问题 [物理学与PDE ...
- [物理学与PDEs]第2章习题参考解答
[物理学与PDEs]第2章习题1 无旋时的 Euler 方程 [物理学与PDEs]第2章习题2 质量力有势时的能量方程 [物理学与PDEs]第2章习题3 Laplace 方程的 Neumann 问题 ...
- [物理学与PDEs]第3章习题参考解答
[物理学与PDEs]第3章习题1 只有一个非零分量的磁场 [物理学与PDEs]第3章习题2 仅受重力作用的定常不可压流理想流体沿沿流线的一个守恒量 [物理学与PDEs]第3章习题3电磁场的矢势在 Lo ...
- [物理学与PDEs]第4章习题参考解答
[物理学与PDEs]第4章习题1 反应力学方程组形式的化约 - 动量方程与未燃流体质量平衡方程 [物理学与PDEs]第4章习题2 反应力学方程组形式的化约 - 能量守恒方程 [物理学与PDEs]第4章 ...
- [物理学与PDEs]第4章习题4 一维理想反应流体力学方程组的守恒律形式及其 R.H. 条件
写出在忽略粘性与热传导性, 即设 $\mu=\mu'=\kappa=0$ 的情况, 在 Euler 坐标系下具守恒律形式的一维反应流动力学方程组. 由此求出在解的强间断线上应满足的 R.H. 条件 ( ...
随机推荐
- SpringBoot使用注解实现事务管理
conttoller controller和普通的controller类一样, 不用改变 @RequestMapping(value = "/path/{id}", method ...
- Vim 宏
宏的概念 什么是宏呢?英文名:macro,代表一串命令的集合. 示例操作文本 SELECT * FROM `edu_ocr_task` WHERE ((`userId`=284871) AND (`u ...
- Kafka 0.11.0.0 实现 producer的Exactly-once 语义(中文)
很高兴地告诉大家,具备新的里程碑意义的功能的Kafka 0.11.x版本(对应 Confluent Platform 3.3)已经release,该版本引入了exactly-once语义,本文阐述的内 ...
- ElasticSearch(七):Java操作elasticsearch基于smartcn中文分词查询
package com.gxy.ESChap01; import java.net.InetAddress; import org.elasticsearch.action.search.Search ...
- Kafka 详解(三)------Producer生产者
在第一篇博客我们了解到一个kafka系统,通常是生产者Producer 将消息发送到 Broker,然后消费者 Consumer 去 Broker 获取,那么本篇博客我们来介绍什么是生产者Produc ...
- vue-cli3
官网 https://cli.vuejs.org/zh/ ie11 的问题 https://stackoverflow.com/questions/52056358/vue-cli-3-project ...
- linux 运维工程师发展路线
linux运维发展常见的就是下面两条路线:第一条:运维应用-->系统架构-->运维开发-->系统开发第二条:运维应用-->应用dba-->架构dba-->开发DBA ...
- redis简介与持久化
一 . redis简介 redis属于NoSQL学名(not only sql) 特点: 存储结构与mysql这一种关系型数据库完全不同,nosql存储的是key value形式 nosql有很多产品 ...
- Python——Django-form表单提交
一.提交的注意事项 1. form不是from,所有获取用户输入的标签都应该放在form里面, input并且必须要有name属性 2. action属性控制往哪儿提交,method一般都设置成pos ...
- Lodop打印表格带页头页尾 自动分页每页显示头尾
Lodop中有两种专门给超文本表格的方式,ADD_PRINT_TABLE和ADD_PRINT_TBURL,该方式只能用于单个表格,表格外的内容不显示,是专门用于打印html超文本表格的.使用这两个语句 ...