James Munkres Topology: Theorem 20.4
Theorem 20.4 The uniform topology on \(\mathbb{R}^J\) is finer than the product topology and coarser than the box topology; these three topologies are all different if \(J\) is infinite.
Proof: a) Prove the uniform topology is finer than the product topology.
Analysis: Look inside an open ball in the product topology for an open ball in the uniform topology and then apply Lemma 20.2. It should be also noted that the product topology on \(\mathbb{R}^J\) has each of its coordinate space assigned the standard topology, which is consistent with both topologies induced from the two metrics \(d\) and \(\bar{d}\) according to example 2 in this section and Theorem 20.1.
According to the second part of Theorem 19.2, let \(\prod_{\alpha \in J} B_{\alpha}\) be an arbitrary basis element for the product topology on \(\mathbb{R}^J\), where only a finite number of \(B_{\alpha}\)s are open intervals in \(\mathbb{R}\) and not equal to \(\mathbb{R}\). Let the indices for these \(B_{\alpha}\)s be \(\{\alpha_1, \cdots, \alpha_n\}\) and for all \(i \in \{1, \cdots, n\}\), \(B_{\alpha_i} = (a_i, b_i)\). Then for all \(\vect{x} \in \prod_{\alpha \in J} B_{\alpha}\) and for all \(\alpha \in J\), \(x_{\alpha} \in B_{\alpha}\). Specifically, for all \(i \in \{1, \cdots, n\}\), \(x_{\alpha_i} \in B_{\alpha_i}\). Let \(\varepsilon_{\alpha_i} = \min \{ x_{\alpha_i} - a_i, b_i - x_{\alpha_i} \}\) and \(\varepsilon = \min_{1 \leq i \leq n} \{\varepsilon_{\alpha_1}, \cdots, \varepsilon_{\alpha_n}\}\). Then we’ll check the open ball \(B_{\bar{\rho}}(\vect{x}, \varepsilon)\) in \(\mathbb{R}^J\) with the uniform topology is contained in the basis element \(\prod_{\alpha \in J} B_{\alpha}\).
For all \(\vect{y} \in B_{\bar{\rho}}(\vect{x}, \varepsilon)\), \(\bar{\rho}(\vect{x}, \vect{y}) < \varepsilon\), i.e. \(\sup_{\forall \alpha \in J} \{\bar{d}(x_{\alpha}, y_{\alpha})\} < \varepsilon\). Therefore, for all \(i \in \{1, \cdots, n\}\), \(\bar{d}(x_{\alpha_i}, y_{\alpha_i}) < \varepsilon\). Note that when \(\varepsilon > 1\), \(B_{\bar{\rho}}(\vect{x}, \varepsilon) = \mathbb{R}^J\), which is not what we desire. Instead, we need to define the open ball’s radius as \(\varepsilon' = \min\{\varepsilon, 1\}\). Then we have for all \(\vect{y} \in B_{\bar{\rho}}(\vect{x}, \varepsilon')\), \(\bar{d}(x_{\alpha_i}, y_{\alpha_i}) = d(x_{\alpha_i}, y_{\alpha_i}) < \varepsilon'\), i.e. \(y_{\alpha_i} \in (x_{\alpha_i} - \varepsilon', x_{\alpha_i} + \varepsilon') \subset B_{\alpha_i}\). For other coordinate indices \(\alpha \notin \{\alpha_1, \cdots, \alpha_n\}\), because \(B_{\alpha} = \mathbb{R}\), \(y_{\alpha} \in (x_{\alpha} - \varepsilon', x_{\alpha} + \varepsilon') \subset B_{\alpha}\) holds trivially.
Therefore, the uniform topology is finer than the product topology.
b) Prove the uniform topology is strictly finer than the product topology, when \(J\) is infinite.
When \(J\) is infinite, for an open ball \(B_{\bar{\rho}}(\vect{x}, \varepsilon)\) with \(\varepsilon \in (0, 1]\), there are infinite number of coordinate components comprising this open ball which are not equal to \(\mathbb{R}\). Therefore, there is no basis element for the product topology which is contained in \(B_{\bar{\rho}}(\vect{x}, \varepsilon)\).
c) Prove the box topology is finer than the uniform topology.
For any basis element \(B_{\bar{\rho}}(\vect{x}, \varepsilon)\) for the uniform topology, when \(\varepsilon > 1\), \(B_{\bar{\rho}}(\vect{x}, \varepsilon) = \mathbb{R}^J\). Then for all \(\vect{y} \in B_{\bar{\rho}}(\vect{x}, \varepsilon)\), any basis element for the box topology containing this \(\vect{y}\) is contained in \(B_{\bar{\rho}}(\vect{x}, \varepsilon)\).
When \(\varepsilon \in (0, 1]\), \(\bar{d}\) is equivalent to \(d\) on \(\mathbb{R}\). Then for all \(\vect{y} \in B_{\bar{\rho}}(\vect{x}, \varepsilon)\), we have
\[
\sup_{\alpha \in J} \{ \bar{d}(x_{\alpha}, y_{\alpha}) \} = \sup_{\alpha \in J} \{ d(x_{\alpha}, y_{\alpha}) \} < \varepsilon.
\]
Therefore, for all \(\alpha \in J\), \(y_{\alpha} \in (x_{\alpha} - \varepsilon, x_{\alpha} + \varepsilon)\). Then we may tend to say that \(\prod_{\alpha \in J} (x_{\alpha} - \varepsilon, x_{\alpha} + \varepsilon)\) is a basis element for the box topology containing \(\vect{y}\), which is contained in \(B_{\bar{\rho}}(\vect{x}, \varepsilon)\). However, this is not true. Because \(\vect{y}\) can be thus selected such that as \(\alpha\) changes in \(J\), \(\bar{d}(x_{\alpha}, y_{\alpha})\) can be arbitrarily close to \(\varepsilon\), which leads to \(\sup_{\alpha \in J} \{ \bar{d}(x_{\alpha}, y_{\alpha}) \} = \varepsilon\). This makes \(\vect{y} \notin B_{\bar{\rho}}(\vect{x}, \varepsilon)\) and \(\prod_{\alpha \in J} (x_{\alpha} - \varepsilon, x_{\alpha} + \varepsilon)\) is not contained in \(B_{\bar{\rho}}(\vect{x}, \varepsilon)\). Such example can be given for \(\mathbb{R}^{\omega}\), where we let \(\vect{y} = \{y_n = x_n + \varepsilon - \frac{\varepsilon}{n}\}_{n \in \mathbb{Z}_+}\). When \(n \rightarrow \infty\), \(\bar{d}(x_n, y_n) \rightarrow \varepsilon\).
With this point clarified, a smaller basis element should be selected for the box topology, such as \(\prod_{\alpha \in J} (x_{\alpha} - \frac{\varepsilon}{2}, x_{\alpha} + \frac{\varepsilon}{2})\). For all \(\vect{y}\) in this basis element, \(\sup_{\alpha \in J} \{ \bar{d}(x_{\alpha}, y_{\alpha}) \} \leq \frac{\varepsilon}{2} < \varepsilon\). Hence \(\prod_{\alpha \in J} (x_{\alpha} - \frac{\varepsilon}{2}, x_{\alpha} + \frac{\varepsilon}{2}) \subset B_{\bar{\rho}}(\vect{x}, \varepsilon)\) and the box topology is finer than the uniform topology.
Remark: The proof in the book for this part inherently adopts the definition of open set via topological basis introduced in section 13.
d) Prove the box topology is strictly finer than the uniform topology, when \(J\) is infinite.
Analysis: Because the open ball in the uniform topology sets an upper bound on the dimension of each coordinate component, it can be envisioned that if we construct a basis element for the box topology with the dimension for each coordinate component approaching to zero, it cannot cover any open ball in the uniform topology with a fixed radius no matter how small it is.
Let’s consider the case in \(\mathbb{R}^{\omega}\). Select a basis element for the box topology as \(\prod_{n = 1}^{\infty} (x_n - \frac{c}{n}, x_n + \frac{c}{n})\) with \((c > 0)\). Then for all \(\varepsilon > 0\), there exists \(\vect{y}_0 \in B_{\bar{\rho}}(\vect{x}, \varepsilon)\) such that \(\vect{y}_0 \notin \prod_{n = 1}^{\infty} (x_n - \frac{c}{n}, x_n + \frac{c}{n})\). For example, we can select \(\vect{y}_0 = (x_n + \frac{\varepsilon}{2})_{n \geq 1}\). Then there exists an \(n_0 \in \mathbb{Z}_+\) such that when \(n > n_0\), \(\frac{c}{n} < \frac{\varepsilon}{n}\) and \(y_n \notin (x_n - \frac{c}{n}, x_n + \frac{c}{n})\). Hence, the box topology is strictly finer than the uniform topology.
James Munkres Topology: Theorem 20.4的更多相关文章
- James Munkres Topology: Theorem 20.3 and metric equivalence
Proof of Theorem 20.3 Theorem 20.3 The topologies on \(\mathbb{R}^n\) induced by the euclidean metri ...
- James Munkres Topology: Theorem 19.6
Theorem 19.6 Let \(f: A \rightarrow \prod_{\alpha \in J} X_{\alpha}\) be given by the equation \[ f( ...
- James Munkres Topology: Theorem 16.3
Theorem 16.3 If \(A\) is a subspace of \(X\) and \(B\) is a subspace of \(Y\), then the product topo ...
- James Munkres Topology: Sec 18 Exer 12
Theorem 18.4 in James Munkres “Topology” states that if a function \(f : A \rightarrow X \times Y\) ...
- James Munkres Topology: Sec 22 Exer 6
Exercise 22.6 Recall that \(\mathbb{R}_{K}\) denotes the real line in the \(K\)-topology. Let \(Y\) ...
- James Munkres Topology: Sec 22 Exer 3
Exercise 22.3 Let \(\pi_1: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}\) be projection on th ...
- James Munkres Topology: Lemma 21.2 The sequence lemma
Lemma 21.2 (The sequence lemma) Let \(X\) be a topological space; let \(A \subset X\). If there is a ...
- James Munkres Topology: Sec 37 Exer 1
Exercise 1. Let \(X\) be a space. Let \(\mathcal{D}\) be a collection of subsets of \(X\) that is ma ...
- James Munkres Topology: Sec 22 Example 1
Example 1 Let \(X\) be the subspace \([0,1]\cup[2,3]\) of \(\mathbb{R}\), and let \(Y\) be the subsp ...
随机推荐
- [SimplePlayer] 2. 在屏幕上显示视频图像
我们这里采用SDL(本文所用版本为SDL2.0.5)来进行图像输出,SDL在进行图像渲染时一般采用的会是direct3D或者opengl,SDL对它们进行了封装,不过我们这里只讨论SDL的使用,并不会 ...
- Python【初识篇】简介
python是什么? 为什么学python? python在权威语言排序网站上的热度 python历史排名 python应用领域 哪些公司在用python python官方简介 上面的话简单的总结来说 ...
- python学习day11 函数Ⅲ (内置函数与lambda表达式)
函数Ⅲ(内置函数&lambda表达式) 1.函数小高级 函数可以当做变量来使用: def func(): print(123) func_list = [func, func, func] # ...
- 微服务之服务中心—zookeeper
微服务中的服务注册与发现 传统的项目中,某个服务访问另一个服务,可以通过在配置文件中记录其他服务静态地址的形式进行访问,通常这个配置文件也很少更新,模式如下图: 而在微服务中,每个功能可能都是一个独立 ...
- saltstack主机管理项目:主机管理项目需求分析(一)
1.场景: 我现在又一台裸机要实现一下任务 2.配置管理: 1.装上nginx,mysql 2.nginx用我指定的配置文件 3.mysql用户 4.设置一个默认的数据库访问权限 5.启动mysql ...
- 中间件方法必须返回Response对象实例(tp5.1+小程序结合时候出的问题)
前言:在最近开发小程序通过中间件检查是否携带token时候报的一个错误 解决方法: 根据手册中需要return出去才可以不报错
- [物理学与PDEs]第1章第8节 静电场和静磁场 8.3 静磁场
1. 静磁场: 由稳定电流形成的磁场. 2. 此时, Maxwell 方程组为 $$\beex \bea \Div{\bf D}&=\rho_f,\\ \rot {\bf E}&={\ ...
- sql 发送邮件
一.启用Database Mail XPs功能. 查看Database Mail XPs功能是否打开,从返回结果来看,value为0说明没有打开,注意SQL Mail XPs是SQL Server早期 ...
- vue之生命周期函数例子
执行代码看生命周期函数的执行顺序 <!-- 根组件 --> <!-- vue的模板内,所有内容要被一个根节点包含起来 App.vue --> <template> ...
- brew install
1. 访问 https://brew.sh/ 命令行下运行: /usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.co ...