James Munkres Topology: Theorem 20.4
Theorem 20.4 The uniform topology on \(\mathbb{R}^J\) is finer than the product topology and coarser than the box topology; these three topologies are all different if \(J\) is infinite.
Proof: a) Prove the uniform topology is finer than the product topology.
Analysis: Look inside an open ball in the product topology for an open ball in the uniform topology and then apply Lemma 20.2. It should be also noted that the product topology on \(\mathbb{R}^J\) has each of its coordinate space assigned the standard topology, which is consistent with both topologies induced from the two metrics \(d\) and \(\bar{d}\) according to example 2 in this section and Theorem 20.1.
According to the second part of Theorem 19.2, let \(\prod_{\alpha \in J} B_{\alpha}\) be an arbitrary basis element for the product topology on \(\mathbb{R}^J\), where only a finite number of \(B_{\alpha}\)s are open intervals in \(\mathbb{R}\) and not equal to \(\mathbb{R}\). Let the indices for these \(B_{\alpha}\)s be \(\{\alpha_1, \cdots, \alpha_n\}\) and for all \(i \in \{1, \cdots, n\}\), \(B_{\alpha_i} = (a_i, b_i)\). Then for all \(\vect{x} \in \prod_{\alpha \in J} B_{\alpha}\) and for all \(\alpha \in J\), \(x_{\alpha} \in B_{\alpha}\). Specifically, for all \(i \in \{1, \cdots, n\}\), \(x_{\alpha_i} \in B_{\alpha_i}\). Let \(\varepsilon_{\alpha_i} = \min \{ x_{\alpha_i} - a_i, b_i - x_{\alpha_i} \}\) and \(\varepsilon = \min_{1 \leq i \leq n} \{\varepsilon_{\alpha_1}, \cdots, \varepsilon_{\alpha_n}\}\). Then we’ll check the open ball \(B_{\bar{\rho}}(\vect{x}, \varepsilon)\) in \(\mathbb{R}^J\) with the uniform topology is contained in the basis element \(\prod_{\alpha \in J} B_{\alpha}\).
For all \(\vect{y} \in B_{\bar{\rho}}(\vect{x}, \varepsilon)\), \(\bar{\rho}(\vect{x}, \vect{y}) < \varepsilon\), i.e. \(\sup_{\forall \alpha \in J} \{\bar{d}(x_{\alpha}, y_{\alpha})\} < \varepsilon\). Therefore, for all \(i \in \{1, \cdots, n\}\), \(\bar{d}(x_{\alpha_i}, y_{\alpha_i}) < \varepsilon\). Note that when \(\varepsilon > 1\), \(B_{\bar{\rho}}(\vect{x}, \varepsilon) = \mathbb{R}^J\), which is not what we desire. Instead, we need to define the open ball’s radius as \(\varepsilon' = \min\{\varepsilon, 1\}\). Then we have for all \(\vect{y} \in B_{\bar{\rho}}(\vect{x}, \varepsilon')\), \(\bar{d}(x_{\alpha_i}, y_{\alpha_i}) = d(x_{\alpha_i}, y_{\alpha_i}) < \varepsilon'\), i.e. \(y_{\alpha_i} \in (x_{\alpha_i} - \varepsilon', x_{\alpha_i} + \varepsilon') \subset B_{\alpha_i}\). For other coordinate indices \(\alpha \notin \{\alpha_1, \cdots, \alpha_n\}\), because \(B_{\alpha} = \mathbb{R}\), \(y_{\alpha} \in (x_{\alpha} - \varepsilon', x_{\alpha} + \varepsilon') \subset B_{\alpha}\) holds trivially.
Therefore, the uniform topology is finer than the product topology.
b) Prove the uniform topology is strictly finer than the product topology, when \(J\) is infinite.
When \(J\) is infinite, for an open ball \(B_{\bar{\rho}}(\vect{x}, \varepsilon)\) with \(\varepsilon \in (0, 1]\), there are infinite number of coordinate components comprising this open ball which are not equal to \(\mathbb{R}\). Therefore, there is no basis element for the product topology which is contained in \(B_{\bar{\rho}}(\vect{x}, \varepsilon)\).
c) Prove the box topology is finer than the uniform topology.
For any basis element \(B_{\bar{\rho}}(\vect{x}, \varepsilon)\) for the uniform topology, when \(\varepsilon > 1\), \(B_{\bar{\rho}}(\vect{x}, \varepsilon) = \mathbb{R}^J\). Then for all \(\vect{y} \in B_{\bar{\rho}}(\vect{x}, \varepsilon)\), any basis element for the box topology containing this \(\vect{y}\) is contained in \(B_{\bar{\rho}}(\vect{x}, \varepsilon)\).
When \(\varepsilon \in (0, 1]\), \(\bar{d}\) is equivalent to \(d\) on \(\mathbb{R}\). Then for all \(\vect{y} \in B_{\bar{\rho}}(\vect{x}, \varepsilon)\), we have
\[
\sup_{\alpha \in J} \{ \bar{d}(x_{\alpha}, y_{\alpha}) \} = \sup_{\alpha \in J} \{ d(x_{\alpha}, y_{\alpha}) \} < \varepsilon.
\]
Therefore, for all \(\alpha \in J\), \(y_{\alpha} \in (x_{\alpha} - \varepsilon, x_{\alpha} + \varepsilon)\). Then we may tend to say that \(\prod_{\alpha \in J} (x_{\alpha} - \varepsilon, x_{\alpha} + \varepsilon)\) is a basis element for the box topology containing \(\vect{y}\), which is contained in \(B_{\bar{\rho}}(\vect{x}, \varepsilon)\). However, this is not true. Because \(\vect{y}\) can be thus selected such that as \(\alpha\) changes in \(J\), \(\bar{d}(x_{\alpha}, y_{\alpha})\) can be arbitrarily close to \(\varepsilon\), which leads to \(\sup_{\alpha \in J} \{ \bar{d}(x_{\alpha}, y_{\alpha}) \} = \varepsilon\). This makes \(\vect{y} \notin B_{\bar{\rho}}(\vect{x}, \varepsilon)\) and \(\prod_{\alpha \in J} (x_{\alpha} - \varepsilon, x_{\alpha} + \varepsilon)\) is not contained in \(B_{\bar{\rho}}(\vect{x}, \varepsilon)\). Such example can be given for \(\mathbb{R}^{\omega}\), where we let \(\vect{y} = \{y_n = x_n + \varepsilon - \frac{\varepsilon}{n}\}_{n \in \mathbb{Z}_+}\). When \(n \rightarrow \infty\), \(\bar{d}(x_n, y_n) \rightarrow \varepsilon\).
With this point clarified, a smaller basis element should be selected for the box topology, such as \(\prod_{\alpha \in J} (x_{\alpha} - \frac{\varepsilon}{2}, x_{\alpha} + \frac{\varepsilon}{2})\). For all \(\vect{y}\) in this basis element, \(\sup_{\alpha \in J} \{ \bar{d}(x_{\alpha}, y_{\alpha}) \} \leq \frac{\varepsilon}{2} < \varepsilon\). Hence \(\prod_{\alpha \in J} (x_{\alpha} - \frac{\varepsilon}{2}, x_{\alpha} + \frac{\varepsilon}{2}) \subset B_{\bar{\rho}}(\vect{x}, \varepsilon)\) and the box topology is finer than the uniform topology.
Remark: The proof in the book for this part inherently adopts the definition of open set via topological basis introduced in section 13.
d) Prove the box topology is strictly finer than the uniform topology, when \(J\) is infinite.
Analysis: Because the open ball in the uniform topology sets an upper bound on the dimension of each coordinate component, it can be envisioned that if we construct a basis element for the box topology with the dimension for each coordinate component approaching to zero, it cannot cover any open ball in the uniform topology with a fixed radius no matter how small it is.
Let’s consider the case in \(\mathbb{R}^{\omega}\). Select a basis element for the box topology as \(\prod_{n = 1}^{\infty} (x_n - \frac{c}{n}, x_n + \frac{c}{n})\) with \((c > 0)\). Then for all \(\varepsilon > 0\), there exists \(\vect{y}_0 \in B_{\bar{\rho}}(\vect{x}, \varepsilon)\) such that \(\vect{y}_0 \notin \prod_{n = 1}^{\infty} (x_n - \frac{c}{n}, x_n + \frac{c}{n})\). For example, we can select \(\vect{y}_0 = (x_n + \frac{\varepsilon}{2})_{n \geq 1}\). Then there exists an \(n_0 \in \mathbb{Z}_+\) such that when \(n > n_0\), \(\frac{c}{n} < \frac{\varepsilon}{n}\) and \(y_n \notin (x_n - \frac{c}{n}, x_n + \frac{c}{n})\). Hence, the box topology is strictly finer than the uniform topology.
James Munkres Topology: Theorem 20.4的更多相关文章
- James Munkres Topology: Theorem 20.3 and metric equivalence
Proof of Theorem 20.3 Theorem 20.3 The topologies on \(\mathbb{R}^n\) induced by the euclidean metri ...
- James Munkres Topology: Theorem 19.6
Theorem 19.6 Let \(f: A \rightarrow \prod_{\alpha \in J} X_{\alpha}\) be given by the equation \[ f( ...
- James Munkres Topology: Theorem 16.3
Theorem 16.3 If \(A\) is a subspace of \(X\) and \(B\) is a subspace of \(Y\), then the product topo ...
- James Munkres Topology: Sec 18 Exer 12
Theorem 18.4 in James Munkres “Topology” states that if a function \(f : A \rightarrow X \times Y\) ...
- James Munkres Topology: Sec 22 Exer 6
Exercise 22.6 Recall that \(\mathbb{R}_{K}\) denotes the real line in the \(K\)-topology. Let \(Y\) ...
- James Munkres Topology: Sec 22 Exer 3
Exercise 22.3 Let \(\pi_1: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}\) be projection on th ...
- James Munkres Topology: Lemma 21.2 The sequence lemma
Lemma 21.2 (The sequence lemma) Let \(X\) be a topological space; let \(A \subset X\). If there is a ...
- James Munkres Topology: Sec 37 Exer 1
Exercise 1. Let \(X\) be a space. Let \(\mathcal{D}\) be a collection of subsets of \(X\) that is ma ...
- James Munkres Topology: Sec 22 Example 1
Example 1 Let \(X\) be the subspace \([0,1]\cup[2,3]\) of \(\mathbb{R}\), and let \(Y\) be the subsp ...
随机推荐
- JarvisOJ Misc webshell分析
分析压缩包中的数据包文件并获取flag.flag为32位大写md5. 神仙们还是强啊,webshell主要看http流,再过滤只剩下post请求 可以使用 http.request.method == ...
- 关于base64转码解码
刚好涉及到记录一下 1.JS BASE64 解码和编码 js代码: /** * * Base64 encode / decode * * @author haitao.tu * @date 2010- ...
- 11.2 Flask 配置文件,路由系统
配置文件系统 构建 Flask 应用时指定 app = Flask( __name__, template_folder = '', # 指定存储模板文件夹名称 static_url_path = ' ...
- bzoj4671: 异或图——斯特林反演
[BZOJ4671]异或图 - xjr01 - 博客园 考虑先算一些限制少的情况 gi表示把n个点的图,划分成i个连通块的方案数 连通块之间不连通很好处理(怎么处理看下边),但是内部必须连通,就很难办 ...
- expansion pattern ‘Frame&’ contains no argument packs
camera/CameraImpl.h::: error: expansion pattern ‘Frame&’ contains no argument packs void read_fr ...
- python httpserver
python3: python -m http.server 80 python2: python -m SimpleHTTPServer 9004
- Fiddler状态栏
Fiddler状态栏显示了Fiddler的一些配置信息,我们也可以点击这些配置信息进行快速配置. 以下图为例: 状态栏一共显示了四项信息:1.Capturing/空:2.过滤进程类型:3.Web Se ...
- mongodb3.6集群搭建:分片+副本集
mongodb是最常用的noSql数据库,在数据库排名中已经上升到了前五.这篇文章介绍如何搭建高可用的mongodb(分片+副本)集群. 在搭建集群之前,需要首先了解几个概念:路由,分片.副本集.配置 ...
- [物理学与PDEs]第5章第3节 守恒定律, 应力张量
5. 3 守恒定律, 应力张量 5. 3. 1 质量守恒定律 $$\bex \cfrac{\p \rho}{\p t}+\Div_y(\rho{\bf v})=0. \eex$$ 5. 3. 2 应 ...
- [物理学与PDEs]第1章习题7 载流线圈的磁场
设一半径为 $R$ 的圆周电路上的电流强度为 $I$. 试计算在通过圆心垂直于圆周所在平面的直线上, 由该圆周电路产生的磁场的磁感强度. 解答: 由对称性知在该直线 $l$ 上, ${\bf B}$ ...