James Munkres Topology: Theorem 20.4
Theorem 20.4 The uniform topology on \(\mathbb{R}^J\) is finer than the product topology and coarser than the box topology; these three topologies are all different if \(J\) is infinite.
Proof: a) Prove the uniform topology is finer than the product topology.
Analysis: Look inside an open ball in the product topology for an open ball in the uniform topology and then apply Lemma 20.2. It should be also noted that the product topology on \(\mathbb{R}^J\) has each of its coordinate space assigned the standard topology, which is consistent with both topologies induced from the two metrics \(d\) and \(\bar{d}\) according to example 2 in this section and Theorem 20.1.
According to the second part of Theorem 19.2, let \(\prod_{\alpha \in J} B_{\alpha}\) be an arbitrary basis element for the product topology on \(\mathbb{R}^J\), where only a finite number of \(B_{\alpha}\)s are open intervals in \(\mathbb{R}\) and not equal to \(\mathbb{R}\). Let the indices for these \(B_{\alpha}\)s be \(\{\alpha_1, \cdots, \alpha_n\}\) and for all \(i \in \{1, \cdots, n\}\), \(B_{\alpha_i} = (a_i, b_i)\). Then for all \(\vect{x} \in \prod_{\alpha \in J} B_{\alpha}\) and for all \(\alpha \in J\), \(x_{\alpha} \in B_{\alpha}\). Specifically, for all \(i \in \{1, \cdots, n\}\), \(x_{\alpha_i} \in B_{\alpha_i}\). Let \(\varepsilon_{\alpha_i} = \min \{ x_{\alpha_i} - a_i, b_i - x_{\alpha_i} \}\) and \(\varepsilon = \min_{1 \leq i \leq n} \{\varepsilon_{\alpha_1}, \cdots, \varepsilon_{\alpha_n}\}\). Then we’ll check the open ball \(B_{\bar{\rho}}(\vect{x}, \varepsilon)\) in \(\mathbb{R}^J\) with the uniform topology is contained in the basis element \(\prod_{\alpha \in J} B_{\alpha}\).
For all \(\vect{y} \in B_{\bar{\rho}}(\vect{x}, \varepsilon)\), \(\bar{\rho}(\vect{x}, \vect{y}) < \varepsilon\), i.e. \(\sup_{\forall \alpha \in J} \{\bar{d}(x_{\alpha}, y_{\alpha})\} < \varepsilon\). Therefore, for all \(i \in \{1, \cdots, n\}\), \(\bar{d}(x_{\alpha_i}, y_{\alpha_i}) < \varepsilon\). Note that when \(\varepsilon > 1\), \(B_{\bar{\rho}}(\vect{x}, \varepsilon) = \mathbb{R}^J\), which is not what we desire. Instead, we need to define the open ball’s radius as \(\varepsilon' = \min\{\varepsilon, 1\}\). Then we have for all \(\vect{y} \in B_{\bar{\rho}}(\vect{x}, \varepsilon')\), \(\bar{d}(x_{\alpha_i}, y_{\alpha_i}) = d(x_{\alpha_i}, y_{\alpha_i}) < \varepsilon'\), i.e. \(y_{\alpha_i} \in (x_{\alpha_i} - \varepsilon', x_{\alpha_i} + \varepsilon') \subset B_{\alpha_i}\). For other coordinate indices \(\alpha \notin \{\alpha_1, \cdots, \alpha_n\}\), because \(B_{\alpha} = \mathbb{R}\), \(y_{\alpha} \in (x_{\alpha} - \varepsilon', x_{\alpha} + \varepsilon') \subset B_{\alpha}\) holds trivially.
Therefore, the uniform topology is finer than the product topology.
b) Prove the uniform topology is strictly finer than the product topology, when \(J\) is infinite.
When \(J\) is infinite, for an open ball \(B_{\bar{\rho}}(\vect{x}, \varepsilon)\) with \(\varepsilon \in (0, 1]\), there are infinite number of coordinate components comprising this open ball which are not equal to \(\mathbb{R}\). Therefore, there is no basis element for the product topology which is contained in \(B_{\bar{\rho}}(\vect{x}, \varepsilon)\).
c) Prove the box topology is finer than the uniform topology.
For any basis element \(B_{\bar{\rho}}(\vect{x}, \varepsilon)\) for the uniform topology, when \(\varepsilon > 1\), \(B_{\bar{\rho}}(\vect{x}, \varepsilon) = \mathbb{R}^J\). Then for all \(\vect{y} \in B_{\bar{\rho}}(\vect{x}, \varepsilon)\), any basis element for the box topology containing this \(\vect{y}\) is contained in \(B_{\bar{\rho}}(\vect{x}, \varepsilon)\).
When \(\varepsilon \in (0, 1]\), \(\bar{d}\) is equivalent to \(d\) on \(\mathbb{R}\). Then for all \(\vect{y} \in B_{\bar{\rho}}(\vect{x}, \varepsilon)\), we have
\[
\sup_{\alpha \in J} \{ \bar{d}(x_{\alpha}, y_{\alpha}) \} = \sup_{\alpha \in J} \{ d(x_{\alpha}, y_{\alpha}) \} < \varepsilon.
\]
Therefore, for all \(\alpha \in J\), \(y_{\alpha} \in (x_{\alpha} - \varepsilon, x_{\alpha} + \varepsilon)\). Then we may tend to say that \(\prod_{\alpha \in J} (x_{\alpha} - \varepsilon, x_{\alpha} + \varepsilon)\) is a basis element for the box topology containing \(\vect{y}\), which is contained in \(B_{\bar{\rho}}(\vect{x}, \varepsilon)\). However, this is not true. Because \(\vect{y}\) can be thus selected such that as \(\alpha\) changes in \(J\), \(\bar{d}(x_{\alpha}, y_{\alpha})\) can be arbitrarily close to \(\varepsilon\), which leads to \(\sup_{\alpha \in J} \{ \bar{d}(x_{\alpha}, y_{\alpha}) \} = \varepsilon\). This makes \(\vect{y} \notin B_{\bar{\rho}}(\vect{x}, \varepsilon)\) and \(\prod_{\alpha \in J} (x_{\alpha} - \varepsilon, x_{\alpha} + \varepsilon)\) is not contained in \(B_{\bar{\rho}}(\vect{x}, \varepsilon)\). Such example can be given for \(\mathbb{R}^{\omega}\), where we let \(\vect{y} = \{y_n = x_n + \varepsilon - \frac{\varepsilon}{n}\}_{n \in \mathbb{Z}_+}\). When \(n \rightarrow \infty\), \(\bar{d}(x_n, y_n) \rightarrow \varepsilon\).
With this point clarified, a smaller basis element should be selected for the box topology, such as \(\prod_{\alpha \in J} (x_{\alpha} - \frac{\varepsilon}{2}, x_{\alpha} + \frac{\varepsilon}{2})\). For all \(\vect{y}\) in this basis element, \(\sup_{\alpha \in J} \{ \bar{d}(x_{\alpha}, y_{\alpha}) \} \leq \frac{\varepsilon}{2} < \varepsilon\). Hence \(\prod_{\alpha \in J} (x_{\alpha} - \frac{\varepsilon}{2}, x_{\alpha} + \frac{\varepsilon}{2}) \subset B_{\bar{\rho}}(\vect{x}, \varepsilon)\) and the box topology is finer than the uniform topology.
Remark: The proof in the book for this part inherently adopts the definition of open set via topological basis introduced in section 13.
d) Prove the box topology is strictly finer than the uniform topology, when \(J\) is infinite.
Analysis: Because the open ball in the uniform topology sets an upper bound on the dimension of each coordinate component, it can be envisioned that if we construct a basis element for the box topology with the dimension for each coordinate component approaching to zero, it cannot cover any open ball in the uniform topology with a fixed radius no matter how small it is.
Let’s consider the case in \(\mathbb{R}^{\omega}\). Select a basis element for the box topology as \(\prod_{n = 1}^{\infty} (x_n - \frac{c}{n}, x_n + \frac{c}{n})\) with \((c > 0)\). Then for all \(\varepsilon > 0\), there exists \(\vect{y}_0 \in B_{\bar{\rho}}(\vect{x}, \varepsilon)\) such that \(\vect{y}_0 \notin \prod_{n = 1}^{\infty} (x_n - \frac{c}{n}, x_n + \frac{c}{n})\). For example, we can select \(\vect{y}_0 = (x_n + \frac{\varepsilon}{2})_{n \geq 1}\). Then there exists an \(n_0 \in \mathbb{Z}_+\) such that when \(n > n_0\), \(\frac{c}{n} < \frac{\varepsilon}{n}\) and \(y_n \notin (x_n - \frac{c}{n}, x_n + \frac{c}{n})\). Hence, the box topology is strictly finer than the uniform topology.
James Munkres Topology: Theorem 20.4的更多相关文章
- James Munkres Topology: Theorem 20.3 and metric equivalence
Proof of Theorem 20.3 Theorem 20.3 The topologies on \(\mathbb{R}^n\) induced by the euclidean metri ...
- James Munkres Topology: Theorem 19.6
Theorem 19.6 Let \(f: A \rightarrow \prod_{\alpha \in J} X_{\alpha}\) be given by the equation \[ f( ...
- James Munkres Topology: Theorem 16.3
Theorem 16.3 If \(A\) is a subspace of \(X\) and \(B\) is a subspace of \(Y\), then the product topo ...
- James Munkres Topology: Sec 18 Exer 12
Theorem 18.4 in James Munkres “Topology” states that if a function \(f : A \rightarrow X \times Y\) ...
- James Munkres Topology: Sec 22 Exer 6
Exercise 22.6 Recall that \(\mathbb{R}_{K}\) denotes the real line in the \(K\)-topology. Let \(Y\) ...
- James Munkres Topology: Sec 22 Exer 3
Exercise 22.3 Let \(\pi_1: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}\) be projection on th ...
- James Munkres Topology: Lemma 21.2 The sequence lemma
Lemma 21.2 (The sequence lemma) Let \(X\) be a topological space; let \(A \subset X\). If there is a ...
- James Munkres Topology: Sec 37 Exer 1
Exercise 1. Let \(X\) be a space. Let \(\mathcal{D}\) be a collection of subsets of \(X\) that is ma ...
- James Munkres Topology: Sec 22 Example 1
Example 1 Let \(X\) be the subspace \([0,1]\cup[2,3]\) of \(\mathbb{R}\), and let \(Y\) be the subsp ...
随机推荐
- 第六十六天 js操作高级
1.对象使用的高级 对象的key为字符类型,value为任意类型 var obj ={ name:"name", "person-age":18 } // 访问 ...
- bash 字符串处理
bash 字符串处理 字符串切片:${var:offset:length}示例:[root@localhost ~]#mypath="/etc/sysconfig/network-scrip ...
- MT【322】绝对值不等式
已知 $a,b,c\in\mathbb R$,求证:$|a|+|b|+|c|+|a+b+c|\geqslant |a+b|+|b+c|+|c+a|$ 分析:不妨设$c=\max\{a,b,c\},\d ...
- nginx的location配置root、alias用法和区别
root & alias区别root与alias主要区别在于nginx如何解释location后面的uri,这会使两者分别以不同的方式将请求映射到服务器文件上root的处理结果是:root路径 ...
- BSGS与扩展BSGS
BSGS \(BSGS\)算法又称大步小步\((Baby-Step-Giant-Step)\)算法 \(BSGS\)算法主要用于解以下同余方程 \[A^x\equiv B(mod\ p)\]其中\(( ...
- Security+认证812分轻松考过(备战分享)
2019.02.12,开工第一天,我参加了security+考试并顺利通过了考试,812分的成绩有点出乎我的意料,据我所知我周围还没有人考过800分的.怀着愉悦的心态分享下我的备考经历和考试经验. 备 ...
- Mycat的分库分表
其他方法: 雪花算法或者redis来实现id不重复的问题. 数据库分库分表: 垂直拆分的优缺点: 水平拆分: 分片枚举:即根据枚举(定义的常量)进行分类存储.
- 使用ZooKeeper协调多台Web Server的定时任务处理(方案1)
背景说明: 有一套Web服务程序, 为了保证HA, 需要在多台服务器上部署, 该服务程序有一些定时任务要执行, 现在要保证的是, 同一定时任务不会在多台机器上被同时执行. 方案1 --- 任务级的主备 ...
- [物理学与PDEs]第2章习题8 一维定常粘性不可压缩流体的求解
考察固定在 $y=0$ 与 $y=1$ 处两个平板之间的定常粘性不可压缩流体沿 $x$ 方向的流动. 设 $p=p(x)$, 且已知 $p(0) =p_1$, $p(L)=p_2$, $p_1> ...
- AC自动机算法详解 (转载)
首先简要介绍一下AC自动机:Aho-Corasick automation,该算法在1975年产生于贝尔实验室,是著名的多模匹配算法之一.一个常见的例子就是给出n个单词,再给出一段包含m个字符的文章, ...