Theorem 20.4 The uniform topology on \(\mathbb{R}^J\) is finer than the product topology and coarser than the box topology; these three topologies are all different if \(J\) is infinite.

Proof: a) Prove the uniform topology is finer than the product topology.

Analysis: Look inside an open ball in the product topology for an open ball in the uniform topology and then apply Lemma 20.2. It should be also noted that the product topology on \(\mathbb{R}^J\) has each of its coordinate space assigned the standard topology, which is consistent with both topologies induced from the two metrics \(d\) and \(\bar{d}\) according to example 2 in this section and Theorem 20.1.

According to the second part of Theorem 19.2, let \(\prod_{\alpha \in J} B_{\alpha}\) be an arbitrary basis element for the product topology on \(\mathbb{R}^J\), where only a finite number of \(B_{\alpha}\)s are open intervals in \(\mathbb{R}\) and not equal to \(\mathbb{R}\). Let the indices for these \(B_{\alpha}\)s be \(\{\alpha_1, \cdots, \alpha_n\}\) and for all \(i \in \{1, \cdots, n\}\), \(B_{\alpha_i} = (a_i, b_i)\). Then for all \(\vect{x} \in \prod_{\alpha \in J} B_{\alpha}\) and for all \(\alpha \in J\), \(x_{\alpha} \in B_{\alpha}\). Specifically, for all \(i \in \{1, \cdots, n\}\), \(x_{\alpha_i} \in B_{\alpha_i}\). Let \(\varepsilon_{\alpha_i} = \min \{ x_{\alpha_i} - a_i, b_i - x_{\alpha_i} \}\) and \(\varepsilon = \min_{1 \leq i \leq n} \{\varepsilon_{\alpha_1}, \cdots, \varepsilon_{\alpha_n}\}\). Then we’ll check the open ball \(B_{\bar{\rho}}(\vect{x}, \varepsilon)\) in \(\mathbb{R}^J\) with the uniform topology is contained in the basis element \(\prod_{\alpha \in J} B_{\alpha}\).

For all \(\vect{y} \in B_{\bar{\rho}}(\vect{x}, \varepsilon)\), \(\bar{\rho}(\vect{x}, \vect{y}) < \varepsilon\), i.e. \(\sup_{\forall \alpha \in J} \{\bar{d}(x_{\alpha}, y_{\alpha})\} < \varepsilon\). Therefore, for all \(i \in \{1, \cdots, n\}\), \(\bar{d}(x_{\alpha_i}, y_{\alpha_i}) < \varepsilon\). Note that when \(\varepsilon > 1\), \(B_{\bar{\rho}}(\vect{x}, \varepsilon) = \mathbb{R}^J\), which is not what we desire. Instead, we need to define the open ball’s radius as \(\varepsilon' = \min\{\varepsilon, 1\}\). Then we have for all \(\vect{y} \in B_{\bar{\rho}}(\vect{x}, \varepsilon')\), \(\bar{d}(x_{\alpha_i}, y_{\alpha_i}) = d(x_{\alpha_i}, y_{\alpha_i}) < \varepsilon'\), i.e. \(y_{\alpha_i} \in (x_{\alpha_i} - \varepsilon', x_{\alpha_i} + \varepsilon') \subset B_{\alpha_i}\). For other coordinate indices \(\alpha \notin \{\alpha_1, \cdots, \alpha_n\}\), because \(B_{\alpha} = \mathbb{R}\), \(y_{\alpha} \in (x_{\alpha} - \varepsilon', x_{\alpha} + \varepsilon') \subset B_{\alpha}\) holds trivially.

Therefore, the uniform topology is finer than the product topology.

b) Prove the uniform topology is strictly finer than the product topology, when \(J\) is infinite.

When \(J\) is infinite, for an open ball \(B_{\bar{\rho}}(\vect{x}, \varepsilon)\) with \(\varepsilon \in (0, 1]\), there are infinite number of coordinate components comprising this open ball which are not equal to \(\mathbb{R}\). Therefore, there is no basis element for the product topology which is contained in \(B_{\bar{\rho}}(\vect{x}, \varepsilon)\).

c) Prove the box topology is finer than the uniform topology.

For any basis element \(B_{\bar{\rho}}(\vect{x}, \varepsilon)\) for the uniform topology, when \(\varepsilon > 1\), \(B_{\bar{\rho}}(\vect{x}, \varepsilon) = \mathbb{R}^J\). Then for all \(\vect{y} \in B_{\bar{\rho}}(\vect{x}, \varepsilon)\), any basis element for the box topology containing this \(\vect{y}\) is contained in \(B_{\bar{\rho}}(\vect{x}, \varepsilon)\).

When \(\varepsilon \in (0, 1]\), \(\bar{d}\) is equivalent to \(d\) on \(\mathbb{R}\). Then for all \(\vect{y} \in B_{\bar{\rho}}(\vect{x}, \varepsilon)\), we have

\[
\sup_{\alpha \in J} \{ \bar{d}(x_{\alpha}, y_{\alpha}) \} = \sup_{\alpha \in J} \{ d(x_{\alpha}, y_{\alpha}) \} < \varepsilon.
\]

Therefore, for all \(\alpha \in J\), \(y_{\alpha} \in (x_{\alpha} - \varepsilon, x_{\alpha} + \varepsilon)\). Then we may tend to say that \(\prod_{\alpha \in J} (x_{\alpha} - \varepsilon, x_{\alpha} + \varepsilon)\) is a basis element for the box topology containing \(\vect{y}\), which is contained in \(B_{\bar{\rho}}(\vect{x}, \varepsilon)\). However, this is not true. Because \(\vect{y}\) can be thus selected such that as \(\alpha\) changes in \(J\), \(\bar{d}(x_{\alpha}, y_{\alpha})\) can be arbitrarily close to \(\varepsilon\), which leads to \(\sup_{\alpha \in J} \{ \bar{d}(x_{\alpha}, y_{\alpha}) \} = \varepsilon\). This makes \(\vect{y} \notin B_{\bar{\rho}}(\vect{x}, \varepsilon)\) and \(\prod_{\alpha \in J} (x_{\alpha} - \varepsilon, x_{\alpha} + \varepsilon)\) is not contained in \(B_{\bar{\rho}}(\vect{x}, \varepsilon)\). Such example can be given for \(\mathbb{R}^{\omega}\), where we let \(\vect{y} = \{y_n = x_n + \varepsilon - \frac{\varepsilon}{n}\}_{n \in \mathbb{Z}_+}\). When \(n \rightarrow \infty\), \(\bar{d}(x_n, y_n) \rightarrow \varepsilon\).

With this point clarified, a smaller basis element should be selected for the box topology, such as \(\prod_{\alpha \in J} (x_{\alpha} - \frac{\varepsilon}{2}, x_{\alpha} + \frac{\varepsilon}{2})\). For all \(\vect{y}\) in this basis element, \(\sup_{\alpha \in J} \{ \bar{d}(x_{\alpha}, y_{\alpha}) \} \leq \frac{\varepsilon}{2} < \varepsilon\). Hence \(\prod_{\alpha \in J} (x_{\alpha} - \frac{\varepsilon}{2}, x_{\alpha} + \frac{\varepsilon}{2}) \subset B_{\bar{\rho}}(\vect{x}, \varepsilon)\) and the box topology is finer than the uniform topology.

Remark: The proof in the book for this part inherently adopts the definition of open set via topological basis introduced in section 13.

d) Prove the box topology is strictly finer than the uniform topology, when \(J\) is infinite.

Analysis: Because the open ball in the uniform topology sets an upper bound on the dimension of each coordinate component, it can be envisioned that if we construct a basis element for the box topology with the dimension for each coordinate component approaching to zero, it cannot cover any open ball in the uniform topology with a fixed radius no matter how small it is.

Let’s consider the case in \(\mathbb{R}^{\omega}\). Select a basis element for the box topology as \(\prod_{n = 1}^{\infty} (x_n - \frac{c}{n}, x_n + \frac{c}{n})\) with \((c > 0)\). Then for all \(\varepsilon > 0\), there exists \(\vect{y}_0 \in B_{\bar{\rho}}(\vect{x}, \varepsilon)\) such that \(\vect{y}_0 \notin \prod_{n = 1}^{\infty} (x_n - \frac{c}{n}, x_n + \frac{c}{n})\). For example, we can select \(\vect{y}_0 = (x_n + \frac{\varepsilon}{2})_{n \geq 1}\). Then there exists an \(n_0 \in \mathbb{Z}_+\) such that when \(n > n_0\), \(\frac{c}{n} < \frac{\varepsilon}{n}\) and \(y_n \notin (x_n - \frac{c}{n}, x_n + \frac{c}{n})\). Hence, the box topology is strictly finer than the uniform topology.

James Munkres Topology: Theorem 20.4的更多相关文章

  1. James Munkres Topology: Theorem 20.3 and metric equivalence

    Proof of Theorem 20.3 Theorem 20.3 The topologies on \(\mathbb{R}^n\) induced by the euclidean metri ...

  2. James Munkres Topology: Theorem 19.6

    Theorem 19.6 Let \(f: A \rightarrow \prod_{\alpha \in J} X_{\alpha}\) be given by the equation \[ f( ...

  3. James Munkres Topology: Theorem 16.3

    Theorem 16.3 If \(A\) is a subspace of \(X\) and \(B\) is a subspace of \(Y\), then the product topo ...

  4. James Munkres Topology: Sec 18 Exer 12

    Theorem 18.4 in James Munkres “Topology” states that if a function \(f : A \rightarrow X \times Y\) ...

  5. James Munkres Topology: Sec 22 Exer 6

    Exercise 22.6 Recall that \(\mathbb{R}_{K}\) denotes the real line in the \(K\)-topology. Let \(Y\) ...

  6. James Munkres Topology: Sec 22 Exer 3

    Exercise 22.3 Let \(\pi_1: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}\) be projection on th ...

  7. James Munkres Topology: Lemma 21.2 The sequence lemma

    Lemma 21.2 (The sequence lemma) Let \(X\) be a topological space; let \(A \subset X\). If there is a ...

  8. James Munkres Topology: Sec 37 Exer 1

    Exercise 1. Let \(X\) be a space. Let \(\mathcal{D}\) be a collection of subsets of \(X\) that is ma ...

  9. James Munkres Topology: Sec 22 Example 1

    Example 1 Let \(X\) be the subspace \([0,1]\cup[2,3]\) of \(\mathbb{R}\), and let \(Y\) be the subsp ...

随机推荐

  1. linux服务端日志中截取自己所需要的部分

    近期开发一个图片处理的业务,涉及base64字符串解析的问题,为方便与友商间接口调试,日志中保存Base64.日,想想就肝儿疼,记录下来容易,取的时候难.为准确提取,配合两条命令即可. 1.获取日志所 ...

  2. FileZilla-02

    WordPress的权限方案 通常,所有文件应由您的Web服务器上的用户(ftp)帐户拥有,并且应该可由该帐户写入.在共享主机上,文件永远不应归Web服务器进程本身所有(有时这是www,或apache ...

  3. 口胡FFT现场(没准就听懂了)&&FFT学习笔记

    前言(不想听的可以跳到下面) OK.蒟蒻又来口胡了. 自从ZJOI2019上Day的数论课上的多项式听到懵逼了,所以我就下定决心要学好多项式.感觉自己以前学的多项式都是假的. 但是一直在咕咕,现在是中 ...

  4. ovs-qos配置

    QoS配置 在许多网络场景中,都需要根据需求对网络流量部署服务质量(QoS)保障策略,比如限制指定主机的最大接入带宽等需求.本节将介绍如何在OVS上添加队列,并完成数据的入队操作,从而完成QoS策略部 ...

  5. Java8学习笔记(一)--Lambda表达式

    两个概念 函数式接口 函数式接口就是只显式声明一个抽象方法的接口.为保证方法数量不多不少,java8提供了一个专用注解@FunctionalInterface,这样,当接口中声明的抽象方法多于或少于一 ...

  6. epoll ET(边缘触发) LT(水平触发)

    EPOLL事件有两种模型: Edge Triggered (ET) 边缘触发只有数据到来,才触发,不管缓存区中是否还有数据.Level Triggered (LT) 水平触发只要有数据都会触发. 首先 ...

  7. 关于Java____________Object类

    一说Java 不聊聊Object 如何说你了解Java 不多说 具体看源码去 下面是Object的方法 以及方法的作用如下 protected Object clone ()              ...

  8. JavaJDBC整理

    1.1.1    导入驱动jar包 创建lib目录,用于存放当前项目需要的所有jar包 选择jar包,右键执行build path / Add to Build Path 前版本 package co ...

  9. 条件随机场(CRF)

    从宏观上讲,条件随机场就是给出一个序列 X = (x1, x2 ... xn) 得到 另一个序列 Y = (y1 , y2 ... yn). 这两个序列有着一些独特的特性,满足马尔可夫随机场,我理解的 ...

  10. matlab运行出现“变量似乎会随着迭代次数改变而变化,请预分配内存,以提高运行速度”问题

    这句话大致意思就是: b = 0;for i = 1:3    a(i) = b;end是说变量的长度是变化的,经常在循环里出现,比如上面这个例子,这样会影响计算速度,最好的办法是预先定义a的长度,比 ...