[COGS2639]偏序++
[COGS2639]偏序++
题目大意:
\(n(n\le40000)\)个\(k(k\le7)\)元组,求\(k\)维偏序。
思路:
分块后用bitset
维护。
时间复杂度\(\mathcal O(kn\sqrt n)\)。
源代码:
#include<cmath>
#include<cstdio>
#include<cctype>
#include<bitset>
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'0';
while(isdigit(ch=getchar())) x=(((x<<2)+x)<<1)+(ch^'0');
return x;
}
typedef long long int64;
const int K=7,N=40000,B=200;
std::bitset<N> set[7][B],tmp;
int n,k,bel[N],end[B],block,a[K][N],pos[K][N];
int main() {
freopen("partial_order_plus.in","r",stdin);
freopen("partial_order_plus.out","w",stdout);
n=getint(),k=getint();
block=sqrt(n);
for(register int i=0;i<n;i++) {
end[bel[i]=i/block]=i;
}
for(register int i=0;i<n;i++) a[0][i]=i;
for(register int i=1;i<=k;i++) {
for(register int j=0;j<n;j++) {
a[i][j]=getint()-1;
pos[i][a[i][j]]=j;
}
}
for(register int i=0;i<=k;i++) {
for(register int j=0;j<n;j++) {
set[i][bel[a[i][j]]][j]=true;
}
for(register int j=1;j<=(n-1)/block;j++) {
set[i][j]|=set[i][j-1];
}
}
int64 ans=0;
for(register int i=0;i<n;i++) {
tmp=set[0][bel[i]];
for(register int j=i;j<=end[bel[i]];j++) {
tmp[j]=false;
}
for(register int j=1;j<=k;j++) {
tmp&=set[j][bel[a[j][i]]];
for(register int k=a[j][i];k<=end[bel[a[j][i]]];k++) {
tmp[pos[j][k]]=false;
}
}
ans+=tmp.count();
}
printf("%lld\n",ans);
return 0;
}
[COGS2639]偏序++的更多相关文章
- 几道很Interesting的偏序问题
若干道偏序问题(STL,分块) 找了4道题目 BZOJ陌上花开(权限题,提供洛谷链接) Cogs2479偏序 Cogs2580偏序II Cogs2639偏序++ 作为一个正常人,肯定先看三维偏序 做法 ...
- [COGS2479 && COGS2639]高维偏序(CDQ分治,bitset)
COGS2479:四维偏序. CDQ套CDQ CDQ:对a分治,对b排序,再对a打标记,然后执行CDQ2 CDQ2:对b分治,对c归并排序,对d树状数组. #include<cstdio> ...
- 【教程】CDQ套CDQ——四维偏序问题
前言 上一篇文章已经介绍了简单的CDQ分治,包括经典的二维偏序和三维偏序问题,还有带修改和查询的二维/三维偏序问题.本文讲介绍多重CDQ分治的嵌套,即多维偏序问题. 四维偏序问题 给定N( ...
- c++模板函数实例化的偏序机制
一:废话 今天在stackoverflow上看到一个关于c++模板specialization的问题: http://stackoverflow.com/questions/18283851/temp ...
- COGS 2479 偏序 题解
[题意] 给定一个有n个元素的序列,元素编号为1~n,每个元素有三个属性a,b,c,求序列中满足i<j且ai<aj且bi<bj且ci<cj的数对(i,j)的个数. 对于30%的 ...
- SPOJ LIS2 Another Longest Increasing Subsequence Problem 三维偏序最长链 CDQ分治
Another Longest Increasing Subsequence Problem Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://a ...
- 2015北京网络赛 J Clarke and puzzle 求五维偏序 分块+bitset
Clarke and puzzle Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://hihocoder.com/contest/acmicpc20 ...
- COGS 2479. [HZOI 2016]偏序 [CDQ分治套CDQ分治 四维偏序]
传送门 给定一个有n个元素的序列,元素编号为1~n,每个元素有三个属性a,b,c,求序列中满足i<j且ai<aj且bi<bj且ci<cj的数对(i,j)的个数. 对于100%的 ...
- BZOJ 3262: 陌上花开 [CDQ分治 三维偏序]
Description 有n朵花,每朵花有三个属性:花形(s).颜色(c).气味(m),又三个整数表示.现要对每朵花评级,一朵花的级别是它拥有的美丽能超过的花的数量.定义一朵花A比另一朵花B要美丽,当 ...
随机推荐
- bzoj 3236: 洛谷 P4396: [AHOI2013]作业 (莫队, 分块)
题目传送门:洛谷P4396. 题意简述: 给定一个长度为\(n\)的数列.有\(m\)次询问,每次询问区间\([l,r]\)中数值在\([a,b]\)之间的数的个数,和数值在\([a,b]\)之间的不 ...
- ubuntu 18.04 安装 flash
下载源码包, 解压 sudo cp Downloads/flash_player_npapi_linux.x86_64/libflashplayer.so /usr/lib/mozilla/plugi ...
- Oracle Certified Java Programmer 经典题目分析(一)
Given: 1. public class returnIt { 2. returnType methodA(byte x, double y){ 3. return (short) x/y * 2 ...
- OpenJ_POJ 1058 Guideposts
Problem OpenJ_POJ Solution 如果我们用 \(G\) 来表示邻接矩阵,那么答案其实就是求\(\sum_{k|i}^n \binom n i G^i\) 为了消除整除的限制,我们 ...
- Pytorch多进程最佳实践
预备知识 模型并行( model parallelism ):即把模型拆分放到不同的设备进行训练,分布式系统中的不同机器(GPU/CPU等)负责网络模型的不同部分 —— 例如,神经网络模型的不同网络层 ...
- Ubuntu_安装Wiz笔记
前言 安装完成了Linux,有了搜狗输入法,我们还需要笔记软件,本文主要介绍如何安装为知笔记 安装步骤 找到wiz官网:http://www.wiz.cn/ 获取Linux安装教程 安装QT 下载的Q ...
- javaScript一些需要注意的细节
变量声明早于代码运行. 函数声明早于变量声明. this指针代表的是执行当前代码的对象的所有者. JavaScript执行完同步,才能执行异步队列.如:alert,for if while 同步执行, ...
- HDU 1054 Strategic Game(最小路径覆盖)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1054 题目大意:给你一棵树,选取树上最少的节点使得可以覆盖整棵树. 解题思路: 首先树肯定是二分图,因 ...
- day7 面向对象class()学习
面向过程 VS 面向对象 编程范式 编程是程序员用特定的语法+数据结构+算法组成的代码来告诉计算机如何执行任务的过程,一个程序是程序员为了得到一个任务结果而编写的一组指令的集合,正所谓 ...
- Asp.Net MVC Razor视图引擎与My97DatePicker插件的结合
using System; using System.Collections.Generic; using System.Runtime.CompilerServices; using System. ...