spark报错处理
Spark报错处理
1、问题:org.apache.spark.SparkException: Exception thrown in awaitResult
分析:出现这个情况的原因是spark启动的时候设置的是hostname启动的,导致访问的时候DNS不能解析主机名导致。
问题解决:
第一种方法:确保URL是spark://服务器ip:7077,而不是spark://hostname:7077;启动的时候指定-h ip地址
第二种方法:修改主机的host文件添加主机的解析记录(推荐这种方式)
Ip 主机名
第三种方法:hive.metastore.try.direct.sql: false (in hive-site.xml)
2、spark2.x版本使用hive,即copy一份hive-site.xml文件到spark2.x的conf目录下。
使用spark的bin目录下的spark-sql进入终端时总提示一个warning:
Thu Jun 15 12:56:05 CST 2017 WARN: Establishing SSL connection without server's identity verification is not recommended. According to MySQL 5.5.45+, 5.6.26+ and 5.7.6+ requirements SSL connection must be established by default if explicit option isn't set. For compliance with existing applications not using SSL the verifyServerCertificate property is set to 'false'. You need either to explicitly disable SSL by setting useSSL=false, or set useSSL=true and provide truststore for server certificate verification.
解决方法:
修改hive-site.xml文件下的mysql连接的url,设置useSSL=false
。由于hive-site.xml文件采用的是xml格式,所以不支持直接使用&连接,需要使用&进行连接。
<value>jdbc:mysql://localhost:3306/metastore?createDatabaseIfNotExist=true&useSSL=false</value>
重启spark即可,
#../sbin/stop-all.sh
#../sbin/start-all.sh
3、 问题:
Spark运行了一段时间,数据量上来以后,出现了一个这样的报错:
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
17/10/26 20:29:00 ERROR Executor: Exception in task 39.1 in stage 8.0 (TID 1122)
java.io.FileNotFoundException: /tmp/spark-2de5fa03-a7cb-47a2-9540-403de85d0371/executor-eebecccb-4cdb-4b85-80a3-73c4baa4c7bd/blockmgr-fc644c14-23e8-401c-aee8-00bc108bf607/2b/temp_shuffle_75eb7338-be41-41b4-bed4-5dcb0c1d0fdf (No space left on device)
at java.io.FileOutputStream.open0(Native Method)
at java.io.FileOutputStream.open(FileOutputStream.java:270)
at java.io.FileOutputStream.<init>(FileOutputStream.java:213)
at org.apache.spark.storage.DiskBlockObjectWriter.initialize(DiskBlockObjectWriter.scala:102)
at org.apache.spark.storage.DiskBlockObjectWriter.open(DiskBlockObjectWriter.scala:115)
at org.apache.spark.storage.DiskBlockObjectWriter.write(DiskBlockObjectWriter.scala:235)
at org.apache.spark.shuffle.sort.BypassMergeSortShuffleWriter.write(BypassMergeSortShuffleWriter.java:151)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:96)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:53)
at org.apache.spark.scheduler.Task.run(Task.scala:108)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:335)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
从日志报错来看说是没有空间了,spark默认是把临时文件存放到/tmp目录下。需要修改啊!!!放到一个大存储的地方:
解决方法:
修改spark-env.sh
export SPARK_DRIVER_MEMORY=5g
export SPARK_LOCAL_DIRS=/data/sparktmp
不要添加到spark-defaault.conf里面去,因为spark从1.0版本已经放弃了spark.local.dir参数。
源码分析:
(1) DiskBlockManager类中的下面的方法
通过日志我们最终定位这块出现的错误
/**
* Create local directories for storing block data. These directories are
* located inside configured local directories and won't
* be deleted on JVM exit when using the external shuffle service.
*/
private def createLocalDirs(conf: SparkConf): Array[File] = {
Utils.getConfiguredLocalDirs(conf).flatMap { rootDir =>
try {
val localDir = Utils.createDirectory(rootDir, "blockmgr")
logInfo(s"Created local directory at $localDir")
Some(localDir)
} catch {
case e: IOException =>
logError(s"Failed to create local dir in $rootDir. Ignoring this directory.", e)
None
}
}
}
(2) SparkConf.scala 类中的方法
这个方法告诉我们在spark-defaults.conf 中配置spark.local.dir参数在spark1.0 版本后已经过时。
/** Checks for illegal or deprecated config settings. Throws an exception for the former. Not
* idempotent - may mutate this conf object to convert deprecated settings to supported ones. */
private[spark] def validateSettings() {
if (contains("spark.local.dir")) {
val msg = "In Spark 1.0 and later spark.local.dir will be overridden by the value set by " +
"the cluster manager (via SPARK_LOCAL_DIRS in mesos/standalone and LOCAL_DIRS in YARN)."
logWarning(msg)
}
val executorOptsKey = "spark.executor.extraJavaOptions"
val executorClasspathKey = "spark.executor.extr
。。。。
}
(3)Utils.scala 类中的方法
通过分析下面的代码,我们发现不在spark-env.sh 下配置SPARK_LOCAL_DIRS的情况下,
通过该conf.get("spark.local.dir", System.getProperty("java.io.tmpdir")).split(",")设置spark.local.dir,然后或根据路径创建,导致上述错误。
故我们直接在spark-env.sh 中设置SPARK_LOCAL_DIRS 即可解决。
然后我们直接在spark-env.sh 中配置:
export SPARK_LOCAL_DIRS=/home/hadoop/data/sparktmp
/**
* Return the configured local directories where Spark can write files. This
* method does not create any directories on its own, it only encapsulates the
* logic of locating the local directories according to deployment mode.
*/
def getConfiguredLocalDirs(conf: SparkConf): Array[String] = {
val shuffleServiceEnabled = conf.getBoolean("spark.shuffle.service.enabled", false)
if (isRunningInYarnContainer(conf)) {
// If we are in yarn mode, systems can have different disk layouts so we must set it
// to what Yarn on this system said was available. Note this assumes that Yarn has
// created the directories already, and that they are secured so that only the
// user has access to them.
getYarnLocalDirs(conf).split(",")
} else if (conf.getenv("SPARK_EXECUTOR_DIRS") != null) {
conf.getenv("SPARK_EXECUTOR_DIRS").split(File.pathSeparator)
} else if (conf.getenv("SPARK_LOCAL_DIRS") != null) {
conf.getenv("SPARK_LOCAL_DIRS").split(",")
} else if (conf.getenv("MESOS_DIRECTORY") != null && !shuffleServiceEnabled) {
// Mesos already creates a directory per Mesos task. Spark should use that directory
// instead so all temporary files are automatically cleaned up when the Mesos task ends.
// Note that we don't want this if the shuffle service is enabled because we want to
// continue to serve shuffle files after the executors that wrote them have already exited.
Array(conf.getenv("MESOS_DIRECTORY"))
} else {
if (conf.getenv("MESOS_DIRECTORY") != null && shuffleServiceEnabled) {
logInfo("MESOS_DIRECTORY available but not using provided Mesos sandbox because " +
"spark.shuffle.service.enabled is enabled.")
}
// In non-Yarn mode (or for the driver in yarn-client mode), we cannot trust the user
// configuration to point to a secure directory. So create a subdirectory with restricted
// permissions under each listed directory.
conf.get("spark.local.dir", System.getProperty("java.io.tmpdir")).split(",")
}
}
3、Join condition is missing or trivial.Use the CROSS JOIN syntax to allow cartesian products between these relations.;
解决方法:
spark.sql.crossjoin.enabled: true
4、Caused by: org.codehaus.janino.JaninoRuntimeException: Code of method "eval(Lorg/apache/spark/sql/catalyst/InternalRow;)Z" of class "org.apache.spark.sql.catalyst.expressions.GeneratedClass$SpecificPredicate" grows beyond 64 KB
解决方法:
spark.sql.codegen.wholeStage : false
5、java.lang.OutOfMemoryError: Java heap space
解决方法:
spark.driver.memory : 10g <to a higher-value>
spark.sql.ui.retainedExecutions: 5 <to some lower-value>
spark报错处理的更多相关文章
- spark报错:invalid token
启动spark报错,启动container失败,去看yarn的日志,显示invalid token, 经过排查是hadoop子节点的配置和主节点的配置不一致导致的,同步之后,问题解决.
- spark-shell启动spark报错
前言 离线安装好CDH.Coudera Manager之后,通过Coudera Manager安装所有自带的应用,包括hdfs.hive.yarn.spark.hbase等应用,过程很是波折,此处就不 ...
- Spark报错java.io.IOException: Could not locate executable null\bin\winutils.exe in the Hadoop binaries.
Spark 读取 JSON 文件时运行报错 java.io.IOException: Could not locate executable null\bin\winutils.exe in the ...
- 安装spark 报错:java.io.IOException: Could not locate executable E:\hadoop-2.7.7\bin\winutils.exe
打开 cmd 输入 spark-shell 虽然可以正常出现 spark 的标志符,但是报错:java.io.IOException: Could not locate executable E:\h ...
- spark报错 java.lang.NoClassDefFoundError: scala/xml/MetaData
代码: 报错信息: java.lang.NoClassDefFoundError: scala/xml/MetaData 原因:确失jar包 <dependency> <groupI ...
- Spark记录-spark报错Unable to load native-hadoop library for your platform
解决方案一: #cp $HADOOP_HOME/lib/native/libhadoop.so $JAVA_HOME/jre/lib/amd64 #源码编译snappy---./configure ...
- Spark报错:Failed to locate the winutils binary in the hadoop binary path
之前在mac上调试hadoop程序(mac之前配置过hadoop环境)一直都是正常的.因为工作需要,需要在windows上先调试该程序,然后再转到linux下.程序运行的过程中,报 Failed to ...
- window 运行spark报错
Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties // :: ERROR Shell: F ...
- spark 报错 InvalidClassException: no valid constructor
2019-03-19 02:50:24 WARN TaskSetManager:66 - Lost task 1.0 in stage 0.0 (TID 1, 1.2.3.4, executor 1) ...
随机推荐
- 为spring代理类设置属性值
现在有一个bean包含了私有属性,如下: @Component public class Bean { String name; public String getName() { return na ...
- PHP Functions - arsort()
<?php $characters = array('a','b','c','d','e','f'); arsort($characters); print_r($characters); /* ...
- Java-网络编程之-Internet地址
在网络编程中,比较重要的部分,就是关于Internet地址的知识理解 连接到Internet的设备我们成为节点(node),而计算机节点我们称为主机(host),要记住每个node或者host,至少一 ...
- 一起学习MVC(2)Global.asax的学习
在Global.asax.cs文件中 protected void Application_BeginRequest(Object sender, EventArgs e) { ...
- 设计模式总结(《Head First设计模式》学习总结)
写在前面: 学习过程中不仅要熟练掌握技能,理论的消化吸收也必不可少.虽然个人更倾向于学习技术类的东西(短时间的精力投入很快就能看到成效...),但看了很多前辈的经验总结后才知道理论性的东西是绝对不能忽 ...
- ASP.NET下使用Combres对JS、CSS合并和压缩
记录一下,如何简单快捷压缩js和css,通过合并来减少请求次数. 用到的网址: http://www.nuget.org/packages/combres/ https://github.com/bu ...
- RDLC报表学习
RDLC报表由以下三部分构成: 1.制作自己的DateSet集合(就是报表的数据集): 2.制作自己的报表文件.rdlc文件,用于画做报表样式,里面有微软自带的导出和打印功能,其实就为了少做这2个功能 ...
- log4net 未生成log 原因分析
本文假定你对log4net的配置以及在代码中的使用都非常熟悉,但就是没有按预想的生成log文件,正当你抓耳挠腮之时,那以下原因很可能是你解决问题的办法: 1.log4net.dll是否生成到程序运行目 ...
- OpenvSwitch 解读
OpenvSwitch 解读 报文匹配流程参考下图 调用流程(内核): ovs_vport_receive->ovs_dp_process_received_packet->ovs_flo ...
- 解决Navicat连接Oracle时报错ORA-28547
1:ORA-28547 原因:navicate Primium版本的OCi和本地数据库的OCI版本不一致. 解决方法: 1:把navicate Primium版本自带oci.dll替换本地Oracle ...