Spark报错处理

1、问题:org.apache.spark.SparkException: Exception thrown in awaitResult

分析:出现这个情况的原因是spark启动的时候设置的是hostname启动的,导致访问的时候DNS不能解析主机名导致。

问题解决:

第一种方法:确保URL是spark://服务器ip:7077,而不是spark://hostname:7077;启动的时候指定-h  ip地址

第二种方法:修改主机的host文件添加主机的解析记录(推荐这种方式)

Ip     主机名

第三种方法:hive.metastore.try.direct.sql: false         (in hive-site.xml)

2、spark2.x版本使用hive,即copy一份hive-site.xml文件到spark2.x的conf目录下。

使用spark的bin目录下的spark-sql进入终端时总提示一个warning:

Thu Jun 15 12:56:05 CST 2017 WARN: Establishing SSL connection without server's identity verification is not recommended. According to MySQL 5.5.45+, 5.6.26+ and 5.7.6+ requirements SSL connection must be established by default if explicit option isn't set. For compliance with existing applications not using SSL the verifyServerCertificate property is set to 'false'. You need either to explicitly disable SSL by setting useSSL=false, or set useSSL=true and provide truststore for server certificate verification.

解决方法:

修改hive-site.xml文件下的mysql连接的url,设置useSSL=false。由于hive-site.xml文件采用的是xml格式,所以不支持直接使用&连接,需要使用&进行连接。

<value>jdbc:mysql://localhost:3306/metastore?createDatabaseIfNotExist=true&amp;useSSL=false</value>

 

重启spark即可,

#../sbin/stop-all.sh

#../sbin/start-all.sh

 

 

3、 问题:

Spark运行了一段时间,数据量上来以后,出现了一个这样的报错:

at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)

   at java.lang.Thread.run(Thread.java:745)

17/10/26 20:29:00 ERROR Executor: Exception in task 39.1 in stage 8.0 (TID 1122)

java.io.FileNotFoundException: /tmp/spark-2de5fa03-a7cb-47a2-9540-403de85d0371/executor-eebecccb-4cdb-4b85-80a3-73c4baa4c7bd/blockmgr-fc644c14-23e8-401c-aee8-00bc108bf607/2b/temp_shuffle_75eb7338-be41-41b4-bed4-5dcb0c1d0fdf (No space left on device)

   at java.io.FileOutputStream.open0(Native Method)

   at java.io.FileOutputStream.open(FileOutputStream.java:270)

   at java.io.FileOutputStream.<init>(FileOutputStream.java:213)

   at org.apache.spark.storage.DiskBlockObjectWriter.initialize(DiskBlockObjectWriter.scala:102)

   at org.apache.spark.storage.DiskBlockObjectWriter.open(DiskBlockObjectWriter.scala:115)

   at org.apache.spark.storage.DiskBlockObjectWriter.write(DiskBlockObjectWriter.scala:235)

   at org.apache.spark.shuffle.sort.BypassMergeSortShuffleWriter.write(BypassMergeSortShuffleWriter.java:151)

   at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:96)

   at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:53)

   at org.apache.spark.scheduler.Task.run(Task.scala:108)

   at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:335)

   at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)

   at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)

at java.lang.Thread.run(Thread.java:745)

 

从日志报错来看说是没有空间了,spark默认是把临时文件存放到/tmp目录下。需要修改啊!!!放到一个大存储的地方:

 

解决方法:

修改spark-env.sh

export SPARK_DRIVER_MEMORY=5g

export SPARK_LOCAL_DIRS=/data/sparktmp

 

不要添加到spark-defaault.conf里面去,因为spark从1.0版本已经放弃了spark.local.dir参数。

 

源码分析:

(1) DiskBlockManager类中的下面的方法

通过日志我们最终定位这块出现的错误

/**

* Create local directories for storing block data. These directories are

* located inside configured local directories and won't

* be deleted on JVM exit when using the external shuffle service.

*/

private def createLocalDirs(conf: SparkConf): Array[File] = {

Utils.getConfiguredLocalDirs(conf).flatMap { rootDir =>

try {

val localDir = Utils.createDirectory(rootDir, "blockmgr")

logInfo(s"Created local directory at $localDir")

Some(localDir)

} catch {

case e: IOException =>

logError(s"Failed to create local dir in $rootDir. Ignoring this directory.", e)

None

}

}

}

(2) SparkConf.scala 类中的方法

这个方法告诉我们在spark-defaults.conf 中配置spark.local.dir参数在spark1.0 版本后已经过时。

/** Checks for illegal or deprecated config settings. Throws an exception for the former. Not

* idempotent - may mutate this conf object to convert deprecated settings to supported ones. */

private[spark] def validateSettings() {

if (contains("spark.local.dir")) {

val msg = "In Spark 1.0 and later spark.local.dir will be overridden by the value set by " +

"the cluster manager (via SPARK_LOCAL_DIRS in mesos/standalone and LOCAL_DIRS in YARN)."

logWarning(msg)

}

val executorOptsKey = "spark.executor.extraJavaOptions"

val executorClasspathKey = "spark.executor.extr

。。。。

}

(3)Utils.scala 类中的方法

通过分析下面的代码,我们发现不在spark-env.sh 下配置SPARK_LOCAL_DIRS的情况下,

通过该conf.get("spark.local.dir", System.getProperty("java.io.tmpdir")).split(",")设置spark.local.dir,然后或根据路径创建,导致上述错误。

故我们直接在spark-env.sh 中设置SPARK_LOCAL_DIRS 即可解决。

然后我们直接在spark-env.sh 中配置:

export SPARK_LOCAL_DIRS=/home/hadoop/data/sparktmp

/**

* Return the configured local directories where Spark can write files. This

* method does not create any directories on its own, it only encapsulates the

* logic of locating the local directories according to deployment mode.

*/

def getConfiguredLocalDirs(conf: SparkConf): Array[String] = {

val shuffleServiceEnabled = conf.getBoolean("spark.shuffle.service.enabled", false)

if (isRunningInYarnContainer(conf)) {

// If we are in yarn mode, systems can have different disk layouts so we must set it

// to what Yarn on this system said was available. Note this assumes that Yarn has

// created the directories already, and that they are secured so that only the

// user has access to them.

getYarnLocalDirs(conf).split(",")

} else if (conf.getenv("SPARK_EXECUTOR_DIRS") != null) {

conf.getenv("SPARK_EXECUTOR_DIRS").split(File.pathSeparator)

} else if (conf.getenv("SPARK_LOCAL_DIRS") != null) {

conf.getenv("SPARK_LOCAL_DIRS").split(",")

} else if (conf.getenv("MESOS_DIRECTORY") != null && !shuffleServiceEnabled) {

// Mesos already creates a directory per Mesos task. Spark should use that directory

// instead so all temporary files are automatically cleaned up when the Mesos task ends.

// Note that we don't want this if the shuffle service is enabled because we want to

// continue to serve shuffle files after the executors that wrote them have already exited.

Array(conf.getenv("MESOS_DIRECTORY"))

} else {

if (conf.getenv("MESOS_DIRECTORY") != null && shuffleServiceEnabled) {

logInfo("MESOS_DIRECTORY available but not using provided Mesos sandbox because " +

"spark.shuffle.service.enabled is enabled.")

}

// In non-Yarn mode (or for the driver in yarn-client mode), we cannot trust the user

// configuration to point to a secure directory. So create a subdirectory with restricted

// permissions under each listed directory.

conf.get("spark.local.dir", System.getProperty("java.io.tmpdir")).split(",")

}

}

3、Join condition is missing or trivial.Use the CROSS JOIN syntax to allow cartesian products between these relations.;

解决方法:

spark.sql.crossjoin.enabled: true

4、Caused by: org.codehaus.janino.JaninoRuntimeException: Code of method "eval(Lorg/apache/spark/sql/catalyst/InternalRow;)Z" of class "org.apache.spark.sql.catalyst.expressions.GeneratedClass$SpecificPredicate" grows beyond 64 KB

解决方法:

spark.sql.codegen.wholeStage : false

5、java.lang.OutOfMemoryError: Java heap space

解决方法:

spark.driver.memory : 10g   <to a higher-value>

spark.sql.ui.retainedExecutions: 5   <to some lower-value>

spark报错处理的更多相关文章

  1. spark报错:invalid token

    启动spark报错,启动container失败,去看yarn的日志,显示invalid token, 经过排查是hadoop子节点的配置和主节点的配置不一致导致的,同步之后,问题解决.

  2. spark-shell启动spark报错

    前言 离线安装好CDH.Coudera Manager之后,通过Coudera Manager安装所有自带的应用,包括hdfs.hive.yarn.spark.hbase等应用,过程很是波折,此处就不 ...

  3. Spark报错java.io.IOException: Could not locate executable null\bin\winutils.exe in the Hadoop binaries.

    Spark 读取 JSON 文件时运行报错 java.io.IOException: Could not locate executable null\bin\winutils.exe in the ...

  4. 安装spark 报错:java.io.IOException: Could not locate executable E:\hadoop-2.7.7\bin\winutils.exe

    打开 cmd 输入 spark-shell 虽然可以正常出现 spark 的标志符,但是报错:java.io.IOException: Could not locate executable E:\h ...

  5. spark报错 java.lang.NoClassDefFoundError: scala/xml/MetaData

    代码: 报错信息: java.lang.NoClassDefFoundError: scala/xml/MetaData 原因:确失jar包 <dependency> <groupI ...

  6. Spark记录-spark报错Unable to load native-hadoop library for your platform

    解决方案一: #cp $HADOOP_HOME/lib/native/libhadoop.so  $JAVA_HOME/jre/lib/amd64 #源码编译snappy---./configure  ...

  7. Spark报错:Failed to locate the winutils binary in the hadoop binary path

    之前在mac上调试hadoop程序(mac之前配置过hadoop环境)一直都是正常的.因为工作需要,需要在windows上先调试该程序,然后再转到linux下.程序运行的过程中,报 Failed to ...

  8. window 运行spark报错

    Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties // :: ERROR Shell: F ...

  9. spark 报错 InvalidClassException: no valid constructor

    2019-03-19 02:50:24 WARN TaskSetManager:66 - Lost task 1.0 in stage 0.0 (TID 1, 1.2.3.4, executor 1) ...

随机推荐

  1. Spine输出资源一键入Unity3D工具代码

    之前预研过2D骨骼动画编辑工具SPINE,感觉其比cocosStudio及Unity3D自带的骨骼动画编辑器(原生Sprite Tree或Uni2D)要更适合有3DSMax习惯的美术,即Spine更容 ...

  2. 使用WebService与Oracle EBS进行集成

    http://www.cnblogs.com/isline/archive/2010/04/15/1712428.html 一.概述 OracleEBS是Oracle公司的ERP产品,这个产品非常庞大 ...

  3. Android-Java-Thread的使用

    main线程跑三个任务: package android.java.thread2; class Demo { private String name; public Demo(String name ...

  4. SpringBoot tomcat

    该文的前提是已经可以在控制台运行成功,有些时候想放在tomcat里运行 大致分为如下几步 1.配置文件更改 <dependency> <groupId>org.springfr ...

  5. [LeetCode] Unique Paths && Unique Paths II && Minimum Path Sum (动态规划之 Matrix DP )

    Unique Paths https://oj.leetcode.com/problems/unique-paths/ A robot is located at the top-left corne ...

  6. SqlServer Session共享注意点

    公司下派任务,之前的网站是一台服务器,由于用户过多,负载过大,现在老大要求多加一台服务器.加就加贝,应该跟我这DEV没有 关系吧,应该不会碰到Source的吧.但是,之前网站有一些数据是放在Sessi ...

  7. IIS7 上传时出现'ASP 0104 : 80004005'错误

    这个错误本身说的是上传的文件的大小超过IIS所设置的默认值,一般为200KB,压缩文件是个下下之选,我还真这么干过.后来了解到通过更改IIS对上传文件的默认大小设置,来实现上传. 下面说一下具体步骤: ...

  8. ASP.NET MVC Ajax 伪造请求

    1.前言 CSRF(Cross-site request forgery)跨站请求伪造,ASP.NET MVC 应用通过使用AJAX请求来提升用户体验,浏览器开发者工具可以一览众山小,就很容易伪造了请 ...

  9. Office - Outlook

    将邮件存到本地 服务器容量有限,避免丢失和经常提示容量不足 步骤 在File->Account Settings->Account Settings下面 在Data Files标签页新建一 ...

  10. T-SQL判断是否存在表、临时表

    利用SQL SERVER的系统函数 object_id() 可以判断是否存在表.临时表, object_id() 的作用是返回架构范围内对象的数据库对象标识.(即返回系统视图  sys.objects ...