题解

考虑kruskal

我们都是从边权最小的边开始取,然后连在一起

那我们选出边权最小的一堆边,然后这个图就分成了很多联通块,把每个联通块内部用矩阵树定理算一下生成树个数,再把联通块缩成一个大点,重复取下一个边权的边进行操作

好想然而不是很好写= =写起来感觉有点麻烦

模数非质数,用long double水一下过掉了

代码

#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <vector>
#include <set>
#include <cmath>
#include <bitset>
#include <queue>
#define enter putchar('\n')
#define space putchar(' ')
//#define ivorysi
#define pb push_back
#define mo 974711
#define pii pair<int,int>
#define mp make_pair
#define fi first
#define se second
#define MAXN 200005
#define eps 1e-12
using namespace std;
typedef long long int64;
typedef long double db;
template<class T>
void read(T &res) {
res = 0;char c = getchar();T f = 1;
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
res = res * 10 - '0' + c;
c = getchar();
}
res = res * f;
}
template<class T>
void out(T x) {
if(x < 0) {x = -x;putchar('-');}
if(x >= 10) out(x / 10);
putchar('0' + x % 10);
}
int N,M;
struct node {
int u,v,c;
friend bool operator < (const node &a,const node &b) {
return a.c < b.c;
}
}E[1005];
int fa[105],id[105],f[105][105],L[105],tot,D[105];
bool vis[105];
db g[105][105];
int64 ans = 1;
int getfa(int x) {
return x == fa[x] ? x : fa[x] = getfa(fa[x]);
}
db Guass(int n) {
db res = 1;
for(int i = 2 ; i <= n ; ++i) {
int l = i;
for(int j = i + 1 ; j <= n ; ++j) {
if(fabs(g[j][i]) > fabs(g[l][i])) l = j;
}
if(i != l) {
res = -res;
for(int j = i ; j <= n ; ++j) {
swap(g[i][j],g[l][j]);
}
}
if(fabs(g[i][i]) == 0) return 0;
for(int j = i + 1 ; j <= n ; ++j) {
db t = g[j][i] / g[i][i];
for(int k = i ; k <= n ; ++k) {
g[j][k] -= g[i][k] * t;
}
}
}
for(int k = 2 ; k <= n ; ++k) {
res = res * g[k][k];
}
return res;
}
void dfs(int u,int n) {
vis[u] = 1;
L[++tot] = u;
D[u] = tot;
for(int i = 1 ; i <= n ; ++i) {
if(f[u][i]) {
if(!vis[i]) dfs(i,n);
}
}
}
void Process(int l,int r) {
memset(id,0,sizeof(id));
memset(f,0,sizeof(f));
memset(vis,0,sizeof(vis));
int cnt = 0;
for(int i = 1 ; i <= N ; ++i) {
if(!id[getfa(i)]) {
id[getfa(i)] = ++cnt;
}
}
for(int i = l ; i <= r ; ++i) {
int s = getfa(E[i].u),t = getfa(E[i].v);
if(s == t) continue;
f[id[s]][id[t]]++; f[id[t]][id[s]]++;
}
for(int i = 1 ; i <= cnt ; ++i) {
if(!vis[i]) {
tot = 0;
dfs(i,cnt);
if(tot == 1) continue;
memset(g,0,sizeof(g));
for(int j = 1 ; j <= tot ; ++j) {
int u = L[j];
for(int k = 1 ; k <= cnt ; ++k) {
if(f[u][k]) {
g[j][j] += f[u][k];
g[j][D[k]] -= f[u][k];
}
}
}
ans = ans * ((int64)(Guass(tot) + 0.5) % 31011) % 31011;
}
}
for(int i = l ; i <= r ; ++i) {
fa[getfa(E[i].v)] = getfa(E[i].u);
}
}
void Solve() {
read(N);read(M);
for(int i = 1 ; i <= N ; ++i) fa[i] = i;
int u,v,c;
for(int i = 1 ; i <= M ; ++i) {
read(E[i].u);read(E[i].v);read(E[i].c);
fa[getfa(E[i].u)] = getfa(E[i].v);
}
for(int i = 2 ; i <= N ; ++i) {
if(getfa(i) != getfa(i - 1)) {
puts("0");
return;
}
}
for(int i = 1 ; i <= N ; ++i) fa[i] = i;
sort(E + 1,E + M + 1);
v = 0;int st = 0;
bool flag = 0;
for(int i = 1 ; i <= M ; ++i) {
if(E[i].c != v) {
if(st != 0) Process(st,i - 1);
st = i;
v = E[i].c;
flag = 1;
for(int j = 2 ; j <= N ; ++j) {
if(getfa(j) != getfa(j - 1)) {flag = 0;break;}
}
if(flag) break;
}
}
if(!flag) Process(st,M);
out(ans);enter;
}
int main() {
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
Solve();
}

【BZOJ】1016: [JSOI2008]最小生成树计数的更多相关文章

  1. BZOJ 1016: [JSOI2008]最小生成树计数( kruskal + dfs )

    不同最小生成树中权值相同的边数量是一定的, 而且他们对连通性的贡献是一样的.对权值相同的边放在一起(至多10), 暴搜他们有多少种方案, 然后乘法原理. ----------------------- ...

  2. [BZOJ 1016] [JSOI2008] 最小生成树计数 【DFS】

    题目链接:BZOJ - 1016 题目分析 最小生成树的两个性质: 同一个图的最小生成树,满足: 1)同一种权值的边的个数相等 2)用Kruscal按照从小到大,处理完某一种权值的所有边后,图的连通性 ...

  3. [BZOJ]1016 JSOI2008 最小生成树计数

    最小生成树计数 题目描述 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同 ...

  4. BZOJ.1016.[JSOI2008]最小生成树计数(Matrix Tree定理 Kruskal)

    题目链接 最小生成树有两个性质: 1.在不同的MST中某种权值的边出现的次数是一定的. 2.在不同的MST中,连接完某种权值的边后,形成的连通块的状态是一样的. \(Solution1\) 由这两个性 ...

  5. bzoj 1016 [JSOI2008]最小生成树计数——matrix tree(相同权值的边为阶段缩点)(码力)

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1016 就是缩点,每次相同权值的边构成的联通块求一下matrix tree.注意gauss里的 ...

  6. bzoj 1016: [JSOI2008]最小生成树计数【dfs+克鲁斯卡尔】

    有一个性质就是组成最小生成树总边权值的若干边权总是相等的 这意味着按边权排序后在权值相同的一段区间内的边能被选入最小生成树的条数是固定的 所以先随便求一个最小生成树,把每段的入选边数记录下来 然后对于 ...

  7. BZOJ 1016 [JSOI2008]最小生成树计数 ——Matrix-Tree定理

    考虑从小往大加边,然后把所有联通块的生成树个数计算出来. 然后把他们缩成一个点,继续添加下一组. 最后乘法原理即可. 写起来很恶心 #include <queue> #include &l ...

  8. 【BZOJ 1016】 1016: [JSOI2008]最小生成树计数 (DFS|矩阵树定理)

    1016: [JSOI2008]最小生成树计数 Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树 ...

  9. 1016: [JSOI2008]最小生成树计数

    1016: [JSOI2008]最小生成树计数 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 6200  Solved: 2518[Submit][St ...

  10. 【BZOJ】1016: [JSOI2008]最小生成树计数 深搜+并查集

    最小生成树计数 Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小 ...

随机推荐

  1. java基础-Math类常用方法介绍

    java基础-Math类常用方法介绍 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.Math类概念 Math 类包含用于执行基本数学运算的方法,如初等指数.对数.平方根和三角函 ...

  2. javascript精雕细琢(一):var let const function声明的区别

    目录 引言 一.var 二.let 三.const 四.function 五.总结 引言        在学习javascript的过程中,变量是无时无刻不在使用的.那么相对应的,变量声明方法也如是. ...

  3. react-music React全家桶项目,精品之作!

    React-Music 全家桶项目,精品之作! 一.简介 该项目是基于React全家桶开发的一个音乐播放器,技术栈采用:Webpack + React + React-redux + React-ro ...

  4. [csp-201809-4]再卖菜 差分约束or记忆化搜索

    先更新第一个做法:差分约束 转化成最长路,求出的每一个解是满足差分方程的最小值 spfa求最短路 对于边(x->y) 有: if(dis[y] > dis[x] + a[i].d) dis ...

  5. Ubuntu 13.04 主机名的修改

    由于某些原因,要修改Ubuntu的主机名,晚上Google了一下,要改的地方为/etc/hostname,即将里面的字符串替换为你要起的主机名即可. sudo vi /etc/hostname 修改即 ...

  6. NameValuePair方式传参数

    今天工作中联调外部的一个接口用post方式传输,我按照文档封装参数成Jason字符串传入,但是对方一直接受参数为空,折腾了半天也没找到问题.很苦恼,检查代码都没有错误,可是为什么对方接受参数为空呢?然 ...

  7. 升级lamp中php5.6到php7.0过程

    升级过程我就直接摘录博友,http://www.tangshuang.net/1765.html,几乎问题和解决办法都是参照他的,所以我也就不另外写了.谢谢!! 周末看了一下php7的一些情况,被其强 ...

  8. 树形dp(B - Computer HDU - 2196 )

    题目链接:https://cn.vjudge.net/contest/277955#problem/B 题目大意:首先输入n代表有n个电脑,然后再输入n-1行,每一行输入两个数,t1,t2.代表第(i ...

  9. UNIX网络编程 第1章:简介和TCP/IP

    1.1 按1.9节未尾的步骤找出你自己的网络拓扑的信息. 1.2 获取本书示例的源代码(见前言),编译并测试图1-5所示的TCP时间获取客户程序.运行这个程序若干次,每次以不同IP地址作为命令行参数. ...

  10. css3兼容性问题归纳

    Android2.3的overflow问题 在android2.3及以下系统版本的浏览器不支持overflow:scroll / auto,即在页面元素里面的内容如果超过了父元素或祖先元素的高度是无法 ...