概述

CopyOnWriteArrayList是一个线程安全集合,原理简单说就是:在保证线程安全的前提下,牺牲掉写操作的效率来保证读操作的高效。所谓CopyOnWrite就是通过复制的方式来完成对数据的修改,在进行修改的时候,复制一个新数组,在新数组上面进行修改操作,这样就保证了不改变老数组,也就没有一写多读数据不一致的问题了。

定义

public class CopyOnWriteArrayList<E>
implements List<E>, RandomAccess, Cloneable, java.io.Serializable

属性

一个是Lock,另一个是一个对象数组。

/** The lock protecting all mutators */
final transient ReentrantLock lock = new ReentrantLock(); /** The array, accessed only via getArray/setArray. */
private transient volatile Object[] array;

初始化

CopyOnWriteArrayList的初始容量是0,分为这样的几个步骤:

/**
* Creates an empty list.
*/
public CopyOnWriteArrayList() {
setArray(new Object[0]);
}
/**
* Sets the array.
*/
final void setArray(Object[] a) {
array = a;
}

需要说明的是另一个有参构造方法,参数可以是一个集合

/**
* Creates a list containing the elements of the specified
* collection, in the order they are returned by the collection's
* iterator.
*
* @param c the collection of initially held elements
* @throws NullPointerException if the specified collection is null
*/
public CopyOnWriteArrayList(Collection<? extends E> c) {
Object[] elements;
if (c.getClass() == CopyOnWriteArrayList.class)
elements = ((CopyOnWriteArrayList<?>)c).getArray();
else {
elements = c.toArray();
// c.toArray might (incorrectly) not return Object[] (see 6260652)
if (elements.getClass() != Object[].class)
elements = Arrays.copyOf(elements, elements.length, Object[].class);
}
setArray(elements);
}

方法

add(E e)

/**
* Appends the specified element to the end of this list.
*
* @param e element to be appended to this list
* @return {@code true} (as specified by {@link Collection#add})
*/
public boolean add(E e) {
// 锁 1.5 版本的锁 已经不用synchronizated
final ReentrantLock lock = this.lock;
lock.lock();
try {
Object[] elements = getArray();
int len = elements.length;
Object[] newElements = Arrays.copyOf(elements, len + 1);
newElements[len] = e;
setArray(newElements);
return true;
} finally {
lock.unlock();
}
}

从add方法中我们可以看到所谓的CopyOnWrite是如何实现的,在需要修改的时候,复制一个新数组,在新数组上修改,修改结束取代老数组,这样保证了修改操作不影响老数组的正常读取,另修改操作是加锁的,也就是说没有了线程不安全的问题。

和ArrayList相比较,效率比较低,只添加一个元素的情况下(初始容量均为0),用时是ArrayList的5倍左右,但是随着CopyOnWriteArrayList中元素的增加,CopyOnWriteArrayList的修改代价将越来越昂贵。

除了添加其他的修改操作也都是这样的套路,不做过多解释,如remove,也是加锁,复制新数组。

/**
* Removes the element at the specified position in this list.
* Shifts any subsequent elements to the left (subtracts one from their
* indices). Returns the element that was removed from the list.
*
* @throws IndexOutOfBoundsException {@inheritDoc}
*/
public E remove(int index) {
final ReentrantLock lock = this.lock;
lock.lock();
try {
Object[] elements = getArray();
int len = elements.length;
E oldValue = get(elements, index);
int numMoved = len - index - 1;
if (numMoved == 0)
setArray(Arrays.copyOf(elements, len - 1));
else {
Object[] newElements = new Object[len - 1];
System.arraycopy(elements, 0, newElements, 0, index);
System.arraycopy(elements, index + 1, newElements, index,
numMoved);
setArray(newElements);
}
return oldValue;
} finally {
lock.unlock();
}
}

get

public E get(int index) {
return get(getArray(), index);
}
//按照下标获取数组中对应的元素
private E get(Object[] a, int index) {
return (E) a[index];
}

读取的方法就很简单了,按照下标获取对应的元素。

总结

  1. 读写分离,我们修改的是新数组,读取的是老数组,不是一个对象,实现了读写分离。这种技术数据库用的非常多,在高并发下为了缓解数据库的压力,即使做了缓存也要对数据库做读写分离,读的时候使用读库,写的时候使用写库,然后读库、写库之间进行一定的同步,这样就避免同一个库上读、写的IO操作太多。
  2. 场景:读操作远多于修改操作

JDK源码分析(10) CopyOnWriteArrayList的更多相关文章

  1. 【JDK】JDK源码分析-Vector

    概述 上文「JDK源码分析-ArrayList」主要分析了 ArrayList 的实现原理.本文分析 List 接口的另一个实现类:Vector. Vector 的内部实现与 ArrayList 类似 ...

  2. 【JDK】JDK源码分析-ArrayList

    概述 ArrayList 是 List 接口的一个实现类,也是 Java 中最常用的容器实现类之一,可以把它理解为「可变数组」. 我们知道,Java 中的数组初始化时需要指定长度,而且指定后不能改变. ...

  3. 【JDK】JDK源码分析-CountDownLatch

    概述 CountDownLatch 是并发包中的一个工具类,它的典型应用场景为:一个线程等待几个线程执行,待这几个线程结束后,该线程再继续执行. 简单起见,可以把它理解为一个倒数的计数器:初始值为线程 ...

  4. Solr4.8.0源码分析(10)之Lucene的索引文件(3)

    Solr4.8.0源码分析(10)之Lucene的索引文件(3) 1. .si文件 .si文件存储了段的元数据,主要涉及SegmentInfoFormat.java和Segmentinfo.java这 ...

  5. JDK源码分析—— ArrayBlockingQueue 和 LinkedBlockingQueue

    JDK源码分析—— ArrayBlockingQueue 和 LinkedBlockingQueue 目的:本文通过分析JDK源码来对比ArrayBlockingQueue 和LinkedBlocki ...

  6. JDK 源码分析(4)—— HashMap/LinkedHashMap/Hashtable

    JDK 源码分析(4)-- HashMap/LinkedHashMap/Hashtable HashMap HashMap采用的是哈希算法+链表冲突解决,table的大小永远为2次幂,因为在初始化的时 ...

  7. JDK源码分析(三)—— LinkedList

    参考文档 JDK源码分析(4)之 LinkedList 相关

  8. JDK源码分析(一)—— String

    dir 参考文档 JDK源码分析(1)之 String 相关

  9. JDK源码分析(2)LinkedList

    JDK版本 LinkedList简介 LinkedList 是一个继承于AbstractSequentialList的双向链表.它也可以被当作堆栈.队列或双端队列进行操作. LinkedList 实现 ...

  10. 【JDK】JDK源码分析-LinkedHashMap

    概述 前文「JDK源码分析-HashMap(1)」分析了 HashMap 主要方法的实现原理(其他问题以后分析),本文分析下 LinkedHashMap. 先看一下 LinkedHashMap 的类继 ...

随机推荐

  1. linux文件管理2

    1.显示文件内容 cat : 显示文件内容 tac : 倒序显示内容 2.更改文件权限 chmod :更改文件权限 -R 递归改变 chown :更改文件拥有者 -R 递归改变 chgrp :更改文件 ...

  2. 面向对象设计模式纵横谈:Adapter 适配器模式(笔记记录)

    适配(转换)的概念无处不在 适配,即在不改变原有实现的基础上,将原先不兼容的接口转换为兼容的接口.生活中适配转换的例子太多了,也是设计模式里面比较容易理解的一个模式. 动机(Motivation) 在 ...

  3. 全基因组测序 从头测序(de novo sequencing) 重测序(re-sequencing)

    全基因组测序 全基因组测序分为从头测序(de novo sequencing)和重测序(re-sequencing). 从头测序(de novo)不需要任何参考基因组信息即可对某个物种的基因组进行测序 ...

  4. 2. Get the codes from GIT

    Clone the code from git.

  5. swift 设置string 中汉字中变色等处理代码

    我们在做弹窗 或者显示label string的时候经常会用到字体变色 变大 等特殊处理, swift中提供一个函数 NSMutableAttributedString 使用方法简介 var main ...

  6. 2018.08.19 NOIP模拟 dp(二分+状压dp)

    Dp 题目背景 SOURCE:NOIP2015-SHY-10 题目描述 一块土地有 n 个连续的部分,用 H[1],H[2],-,H[n] 表示每个部分的最初高度.有 n 种泥土可用,他们都能覆盖连续 ...

  7. 2018.07.31 POJ1741Tree(点分治)

    传送门 只是来贴一个点分治的板子(年轻时候写的丑别介意). 代码: #include<cstdio> #include<cstring> #include<algorit ...

  8. hdu-1253(bfs+剪枝)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1253 思路:简单的bfs,就是要注意剪枝. #include<iostream> #inc ...

  9. 28. Bad Influence of Western Diet 西式饮食的消极影响

    28. Bad Influence of Western Diet 西式饮食的消极影响 ① The spread of Western eating habits around the world i ...

  10. RHEL6解决无法使用YUM源问题(转)

    RHEL的YUM源需要注册用户才能更新使用,由于CentOS和RHEL基本没有区别,并且CentOS已经被REHL收购.所以将RHEL的YUM源替换为CentOS即可.问题如下:[root@bogon ...