上一篇blog已经讲了单调队列与单调栈的用法,本篇将讲述如何借助单调队列优化dp。

我先丢一道题:bzoj1855

此题不难想出O(n^4)做法,我们用f[i][j]表示第i天手中持有j只股票时,所赚钱的最大值。

不难推出以下式子:

$f[i][j]=max\left\{
\begin{aligned}
f[k][l]+(l-j)\times bp[i] , l \in [j,j+bs[i]]\\
f[k][l]-(j-l)\times ap[i] , l \in [j-as[i],j]\\
\end{aligned}
\right \}
k \in [1,i-w]$

考虑到第i天持有的j只股票不一定全是第i天购买的,则对于$\forall j$,有$f[i][j]≥f[i-1][j]$,式子可化为O(n^3),变为:

$f[i][j]=max\left\{
\begin{aligned}
f[i-w-1][l]+(l-j)\times bp[i] , l \in [j,j+bs[i]]\\
f[i-w-1][l]-(j-l)\times ap[i] , l \in [j-as[i],j]\\
\end{aligned}
\right \}$

考虑到$i,j≤1000$,如采用此做法依然会TLE,我们考虑采用单调队列进行优化,以下以卖出股票举例:

我们设$k<l<j$,我们认为$f[i-w-1][k]$比$f[i-w-1][l]$优,则必然满足$f[i-w-1][k]>f[i-1-1][l]+(k-l) \times bp[i]$。

我们对于每一个$i$,维护一个$f[i-w-1]$的单调队列,采用上述的判定机制删除非最优元素,同时考虑到$k,l$应位于区间$[j,j+bs[i]]$中,则需从队头删除下标不位于该区间的元素,最优用队头元素更新f[i][j]即可。

买入同理。

 #include<bits/stdc++.h>
#define M 4010
using namespace std;
int f[M][M/]={},ap[M]={},bp[M]={},as[M]={},bs[M]={};
int t,n,w,head,tail,q[M]={},id[M]={};
int main(){
scanf("%d%d%d",&t,&n,&w);
for(int i=w+;i<=t+w;i++) scanf("%d%d%d%d",ap+i,bp+i,as+i,bs+i);
for(int i=;i<=w;i++)
for(int j=;j<=n;j++) f[i][j]=-;
for(int i=w+;i<=t+w;i++){
for(int j=;j<=n;j++) f[i][j]=f[i-][j];
head=tail=;
for(int j=;j<=n;j++){
if(head<tail&&id[head+]<j-as[i]) head++;
while(head<tail&&q[tail]-f[i-w-][j-]<((j-)-id[tail])*ap[i]) tail--;
q[++tail]=f[i-w-][j-]; id[tail]=j-;
if(head<tail) f[i][j]=max(f[i][j],q[head+]-(j-id[head+])*ap[i]);
}
head=tail=;
for(int j=n-;j>=;j--){
if(head<tail&&j+bs[i]<id[head+]) head++;
while(head<tail&&f[i-w-][j+]-q[tail]>(id[tail]-(j+))*bp[i]) tail--;
q[++tail]=f[i-w-][j+]; id[tail]=j+;
if(head<tail) f[i][j]=max(f[i][j],q[head+]+(id[head+]-j)*bp[i]);
}
}
printf("%d\n",f[t+w][]);
}

【bzoj1855】 [Scoi2010]股票交易 单调队列优化DP的更多相关文章

  1. bzoj1855: [Scoi2010]股票交易--单调队列优化DP

    单调队列优化DP的模板题 不难列出DP方程: 对于买入的情况 由于dp[i][j]=max{dp[i-w-1][k]+k*Ap[i]-j*Ap[i]} AP[i]*j是固定的,在队列中维护dp[i-w ...

  2. bzoj1855: [Scoi2010]股票交易 单调队列优化dp ||HDU 3401

    这道题就是典型的单调队列优化dp了 很明显状态转移的方式有三种 1.前一天不买不卖: dp[i][j]=max(dp[i-1][j],dp[i][j]) 2.前i-W-1天买进一些股: dp[i][j ...

  3. 1855: [Scoi2010]股票交易[单调队列优化DP]

    1855: [Scoi2010]股票交易 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1083  Solved: 519[Submit][Status] ...

  4. LUOGU P2569 [SCOI2010]股票交易(单调队列优化dp)

    传送门 解题思路 不难想一个\(O(n^3)\)的\(dp\),设\(f_{i,j}\)表示第\(i\)天,手上有\(j\)股的最大收益,因为这个\(dp\)具有单调性,所以\(f_i\)可以贪心的直 ...

  5. SCOI 股票交易 单调队列优化dp

    这道题 我很蒙.....首先依照搞单调队列优化dp的一般思路 先写出状态转移方程 在想法子去优化 这个题目中说道w就是这一天要是进行操作就是从前w-1天转移而来因为之前的w天不允许有操作!就是与这些天 ...

  6. BZOJ 1855 股票交易 - 单调队列优化dp

    传送门 题目分析: \(f[i][j]\)表示第i天,手中拥有j份股票的最优利润. 如果不买也不卖,那么\[f[i][j] = f[i-1][j]\] 如果买入,那么\[f[i][j] = max\{ ...

  7. BZOJ1855 股票交易 单调队列优化 DP

    描述 某位蒟佬要买股票, 他神奇地能够预测接下来 T 天的 每天的股票购买价格 ap, 股票出售价格 bp, 以及某日购买股票的上限 as,  某日出售股票上限 bs, 并且每次股票交 ♂ 易 ( 购 ...

  8. BZOJ1855 [Scoi2010]股票交易[单调队列dp]

    题 题面有点复杂,不概括了. 后面的状态有前面的最优解获得大致方向是dp.先是瞎想了个$f[i][j]$表示第$i$天手里有$j$张股票时最大收入(当天无所谓买不买). 然后写了一个$O(n^4)$状 ...

  9. 股票交易——单调队列优化DP

    题目描述 思路 蒟蒻还是太弱了,,就想到半个方程就GG了,至于什么单调队列就更想不到了. $f[i][j]$表示第$i天有j$张股票的最大收益. 那么有四种选择: 不买股票:$f[i][j]=max( ...

随机推荐

  1. 【c3p0】 C3P0的三种配置方式以及基本配置项详解

    数据库连接池C3P0框架是个非常优异的开源jar,高性能的管理着数据源,这里只讨论程序本身负责数据源,不讨论容器管理. ---------------------------------------- ...

  2. 内建类型,与用户自定义类型,返回值为const

    1对内建类型来说,按值返回的是否为const,是无关紧要的,因为编译器已经不让它成为一个坐直,因为它总是一个值,而不是一个变量(thing in c++ page192) 2当处理用户自定义的类型时, ...

  3. 云服务器vps

    0.云计算时代,是一个很时髦的词,人们常常谈起,挂在嘴边.其实云计算通俗点就是电脑托管到了远端的机房,然后不用去买配件主机,是摸不到的,但通过网络远程连接,就可以使用云服务器的资源和功能(搭建网站,测 ...

  4. * 结束Activity

    public class MainActivity extends Activity   {       @Override       public void onCreate(Bundle sav ...

  5. faceswap requirements

    tqdm psutil pathlib==1.0.1 scandir==1.7 opencv-python scikit-image scikit-learn matplotlib==2.2.2 ff ...

  6. MessageBox的常见用法

    一 函数原型及参数 function MessageBox(hWnd: HWND; Text, Caption: PChar; Type: Word): Integer; hWnd:对话框父窗口句柄, ...

  7. Codeforces 706C Hard problem 2016-09-28 19:47 90人阅读 评论(0) 收藏

    C. Hard problem time limit per test 1 second memory limit per test 256 megabytes input standard inpu ...

  8. Bitcoin

    看李笑来老师的2013演讲——Bitcoin is not virtual currency,it is a real world. 1.由于bitcoin的算法中进行有上限量的发布,所以这是不会出现 ...

  9. Alwayson--问题总结二

    1. 备份首选项作用 答:备份首选项并不影响实际的备份操作,只是在备份前提供标示当前副本是否是推荐的备份副本.管理员可以忽略备份首选项在任意副本上执行完整备份和日志备份. 2. 在辅助副本和主副本备份 ...

  10. C#不用union,而是有更好的方式实现

    用过C/C++的人都知道有个union,特别好用,似乎char数组到short,int,float等的转换无所不能,也确实是能,并且用起来十分方便.那C#为什么没有这个关键字呢?怎么实现这个功能?其实 ...