List of NP-complete problems
This is a list of some of the more commonly known problems that are NP-complete when expressed as decision problems. As there are hundreds of such problems known, this list is in no way comprehensive. Many problems of this type can be found in Garey & Johnson (1979).
Graphs and hypergraphs
Graphs occur frequently in everyday applications. Examples include biological or social networks, which contain hundreds, thousands and even billions of nodes in some cases (e.g. Facebook or LinkedIn).
- 1-planarity[1]
- 3-dimensional matching[2][3]
- Bipartite dimension[4]
- Capacitated minimum spanning tree[5]
- Route inspection problem (also called Chinese postman problem) for mixed graphs (having both directed and undirected edges). The program is solvable in polynomial time if the graph has all undirected or all directed edges. Variants include the rural postman problem.[6]
- Clique problem[2][7]
- Complete coloring, a.k.a. achromatic number[8]
- Domatic number[9]
- Dominating set, a.k.a. domination number[10]
-
- NP-complete special cases include the edge dominating set problem, i.e., the dominating set problem in line graphs. NP-complete variants include the connected dominating set problem and the maximum leaf spanning tree problem.[11]
- Bandwidth problem[12]
- Clique cover problem[2][13]
- Rank coloring a.k.a. cycle rank
- Degree-constrained spanning tree[14]
- Exact cover problem. Remains NP-complete for 3-sets. Solvable in polynomial time for 2-sets (this is amatching).[2][15]
- Feedback vertex set[2][16]
- Feedback arc set[2][17]
- Graph homomorphism problem[18]
- Graph coloring[2][19]
- Graph partition into subgraphs of specific types (triangles, isomorphic subgraphs, Hamiltonian subgraphs,forests, perfect matchings) are known NP-complete. Partition into cliques is the same problem as coloringthe complement of the given graph. A related problem is to find a partition that is optimal terms of the number of edges between parts.[20]
- Hamiltonian completion[21]
- Hamiltonian path problem, directed and undirected.[2][22]
- Longest path problem[23]
- Maximum bipartite subgraph or (especially with weighted edges) maximum cut.[2][24]
- Maximum independent set[25]
- Maximum Induced path[26]
- Graph intersection number[27]
- Metric dimension of a graph[28]
- Minimum k-cut
- Minimum spanning tree, or Steiner tree, for a subset of the vertices of a graph.[2] (The minimum spanning tree for an entire graph is solvable in polynomial time.)
- Pathwidth[29]
- Set cover (also called minimum cover problem) This is equivalent, by transposing the incidence matrix, to the hitting set problem.[2][30]
- Set splitting problem [31]
- Shortest total path length spanning tree[32]
- Slope number two testing[33]
- Treewidth[29]
- Vertex cover[2][34]
Mathematical programming
- 3-partition problem[35]
- Bin packing problem[36]
- Knapsack problem, quadratic knapsack problem, and several variants[2][37]
- Variations on the Traveling salesman problem. The problem for graphs is NP-complete if the edge lengths are assumed integers. The problem for points on the plane is NP-complete with the discretized Euclidean metric and rectilinear metric. The problem is known to be NP-hard with the (non-discretized) Euclidean metric.[38]
- Bottleneck traveling salesman[39]
- Integer programming. The variant where variables are required to be 0 or 1, called zero-one linear programming, and several other variants are also NP-complete[2][40]
- Latin squares (The problem of determining if a partially filled square can be completed to form one)
- Numerical 3-dimensional matching[41]
- Partition problem[2][42]
- Quadratic assignment problem[43]
- Quadratic programming (NP-hard in some cases, P if convex)
- Subset sum problem[44]
Formal languages and string processing
- Closest string[45]
- Longest common subsequence problem[46]
- The bounded variant of the Post correspondence problem[47]
- Shortest common supersequence[48]
- String-to-string correction problem[49]
Games and puzzles
- Battleship
- Bejeweled[50]
- Bulls and Cows, marketed as Master Mind: certain optimisation problems but not the game itself.
- Candy Crush Saga[50][51]
- Donkey Kong[52]
- Eternity II
- (Generalized) FreeCell[53]
- Fillomino[54]
- Hashiwokakero[55]
- Heyawake[56]
- (Generalized) Instant Insanity[57]
- Kakuro (Cross Sums)
- Kuromasu (also known as Kurodoko)[58]
- Legend of Zelda[52]
- Lemmings (with a polynomial time limit)[59]
- Light Up[60]
- Masyu[61]
- Metroid[52]
- Minesweeper Consistency Problem[62] (but see Scott, Stege, & van Rooij[63])
- Nimber (or Grundy number) of a directed graph.[64]
- Nonograms
- Nurikabe
- Pokémon[52]
- SameGame
- Slither Link on a variety of grids[65][66][67]
- (Generalized) Sudoku[65][68]
- Super Mario Bros[52]
- Problems related to Tetris[69]
- Verbal arithmetic
Other
- Art gallery problem and its variations.
- Berth allocation problem[70]
- Betweenness
- Assembling an optimal Bitcoin block.[71]
- Boolean satisfiability problem (SAT).[2][72] There are many variations that are also NP-complete. An important variant is where each clause has exactly three literals (3SAT), since it is used in the proof of many other NP-completeness results.[73]
- Conjunctive Boolean query[74]
- Cyclic ordering
- Circuit satisfiability problem
- Uncapacitated Facility Location
- Flow Shop Scheduling Problem
- Generalized assignment problem
- Upward planarity testing[33]
- Hospitals-and-residents problem with couples
- Some problems related to Job-shop scheduling
- Monochromatic triangle[75]
- Minimum maximal independent set a.k.a. minimum independent dominating set[76]
-
- NP-complete special cases include the minimum maximal matching problem,[77] which is essentially equal to the edge dominating set problem (see above).
- Maximum common subgraph isomorphism problem[78]
- Minimum degree spanning tree
- Minimum k-spanning tree
- Metric k-center
- Maximum 2-Satisfiability[79]
- Modal logic S5-Satisfiability
- Some problems related to Multiprocessor scheduling
- Maximum volume submatrix – Problem of selecting the best conditioned subset of a larger m x n matrix. This class of problem is associated with Rank revealing QR factorizations and D optimal experimental design.[80]
- Minimal addition chains for sequences.[81] The complexity of minimal addition chains for individual numbers is unknown.[82]
- Non-linear univariate polynomials over GF[2n], n the length of the input. Indeed, over any GF[qn].
- Open-shop scheduling
- Pathwidth,[29] or, equivalently, interval thickness, and vertex separation number[83]
- Pancake sorting distance problem for strings[84]
- k-Chinese postman
- Subgraph isomorphism problem[85]
- Variations of the Steiner tree problem. Specifically, with the discretized Euclidean metric, rectilinear metric. The problem is known to be NP-hard with the (non-discretized) Euclidean metric.[86]
- Set packing[2][87]
- Serializability of database histories[88]
- Scheduling to minimize weighted completion time
- Sparse approximation
- Block Sorting[89] (Sorting by Block Moves)
- Second order instantiation
- Treewidth[29]
- Testing whether a tree may be represented as Euclidean minimum spanning tree
- Three-dimensional Ising model[90]
- Vehicle routing problem
See also
List of NP-complete problems的更多相关文章
- 算导Ch34. NP Complete
1.图灵停机问题:无论在多长时间内都无法被任何一台计算机解决 问题描述:问题为H,H的输入数据为P(P是一段程序(程序也是一串字符串数据)),判定P在输入w下是否能够最终停止 H(P(w))=0 若P ...
- 简析P和NP问题的概念
简析P和NP问题的概念 本文系作者学习笔记,内容均来源于网络,如有侵权,请联系删除 P类问题:所有能用多项式时间算法计算得到结果的问题,称为多项式问题,也就是P(polynomial). 多项式时间举 ...
- (数学)P、NP、NPC、NP hard问题
概念定义: P问题:能在多项式时间内解决的问题: NP问题:(Nondeterministic Polynomial time Problem)不能在多项式时间内解决或不确定能不能在多项式时间内解决, ...
- P、NP、NPC、NPH问题的区别和联系
时间复杂度 时间复杂度描述了当输入规模变大时,程序运行时间的变化程度,通常使用\(O\)来表示.比如单层循环的时间复杂度为\(O(n)\),也就是说程序运行的时间随着输入规模的增大线性增长,两层循环的 ...
- P/NP问题
目录 P NP NPC NPH 写在开头 1.多项式 如公式:y = axn-bxn-1+c.Ο(log2n).Ο(n). Ο(nlog2n).Ο(n2)和Ο(n3)称为多项式时间.Ο(2n)和Ο(n ...
- Oracle常见的几种等待事件
1. CPU time CPU time其实不是真正的等待事件.是衡量CPU是否瓶颈的一个重要指标.一般来讲,一个良好的系统,CPU TIME 应该排在TOP 5 TIME Event的最前面. 当然 ...
- 边工作边刷题:70天一遍leetcode: day 89
Word Break I/II 现在看都是小case题了,一遍过了.注意这题不是np complete,dp解的time complexity可以是O(n^2) or O(nm) (取决于inner ...
- 人工智能头条(公开课笔记)+AI科技大本营——一拨微信公众号文章
不错的 Tutorial: 从零到一学习计算机视觉:朋友圈爆款背后的计算机视觉技术与应用 | 公开课笔记 分享人 | 叶聪(腾讯云 AI 和大数据中心高级研发工程师) 整 理 | Leo 出 ...
- 201871030108-冯永萍 实验二 个人项目— D{0-1}背包问题项目报告
项目 内容 课程班级博客链接 https://edu.cnblogs.com/campus/xbsf/2018CST 这个作业要求链接 https://www.cnblogs.com/nwnu-dai ...
随机推荐
- 机器学习算法 --- Decision Trees Algorithms
一.Decision Trees Agorithms的简介 决策树算法(Decision Trees Agorithms),是如今最流行的机器学习算法之一,它即能做分类又做回归(不像之前介绍的其他学习 ...
- 页码插入JS脚本
(function() { var obj = document.createElement("script"); obj.type = "text/javascript ...
- init命令详解
基础命令学习目录首页 1.手动输入命令会执行相关操作 #init 0 - 停机(千万不能把initdefault 设置为0 ) #init 1 - 单用户模式 #init 2 - 多用户, ...
- ansible使用1
常用软件安装及使用目录 ansible软件2 ### ansible软件部署安装需求#### 01. 需要有epel源 系统yum源(base epel--pip gem) sshpass---e ...
- 分布式日志收集收集系统:Flume(转)
Flume是一个分布式.可靠.和高可用的海量日志采集.聚合和传输的系统.支持在系统中定制各类数据发送方,用于收集数据:同时,Flume提供对数据进行简单处理,并写到各种数据接受方(可定制)的能力.Fl ...
- 在js中保存数据
localStorage: localStorage.setItem("key", "value"); localStorage.getItem("k ...
- 实验二 Java面向对象程序设计 20135321
课程:Java程序设计 班级:1353 姓名:余佳源 学号:20135321 成绩: 指导教师:娄嘉鹏 实验日期:2015-5-8 实验密级: ...
- 20172311『Java程序设计』课程 结对编程练习_四则运算第二周阶段总结
20172311『Java程序设计』课程 结对编程练习_四则运算第二周阶段总结 结对伙伴 学号 :20172307 姓名 :黄宇瑭 伙伴第一周博客地址 对结对伙伴的评价:黄宇瑭同学的优势在于能够想出一 ...
- 团队冲刺——Five
昨天: 司宇航:web项目如何部署到公网,把网址做成桌面图标链接,登录记住密码功能. 王金萱:注册和登录界面,用户数据库的信息录入. 马佳慧:做界面. 季方:处理爬虫数据,实现统计功能. 遇到的问题: ...
- Chapter 6 面向对象基础
面向对象=对象+类+继承+通信,如果一个软件系统采用这些概念来建立模型并给予实现,那么它就是面向对象的.面向对象的软件工程方法是面向对象方法在软件工程领域的全面运用涉及到从面向对象分析.面向对象设计. ...