noip之前学的内容了,看到题竟然忘了怎么建图了,复习一下。

2-sat

大概是对于每个元素,它有0和1两种选择,必须选一个但不能同时选。这之间又有一些二元关系,比如x&y=1等等。。。

先把每个点拆成0和1两个点。

那么我们就建图,如果x等于A的话y必须等于B,那么从x的A点向y的B点连一条有向边,表示选了一个点它所有的后继点也必须选。

没有一组合法解的情况当且仅当x的01两个点缩点后在同一个强联通分量里。

bzoj 1823

裸题

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define N 205
#define M 4005
using namespace std;
int n,m;
int head[N],ver[M],nxt[M],tot;
void add(int a,int b)
{
tot++;nxt[tot]=head[a];head[a]=tot;ver[tot]=b;return ;
}
int dfn[N],low[N],tim,in[N],st[N],top,cnt,be[N];
void dfs(int x)
{
dfn[x]=low[x]=++tim;
st[++top]=x;
in[x]=;
for(int i=head[x];i;i=nxt[i])
{
if(!dfn[ver[i]])
{
dfs(ver[i]);
low[x]=min(low[x],low[ver[i]]);
}
else if(in[ver[i]])
{
low[x]=min(low[x],dfn[ver[i]]);
}
}
if(low[x]==dfn[x])
{
cnt++;int y;
do
{
y=st[top--];
be[y]=cnt;
in[y]=;
}while(y!=x);
}
return ;
}
int main()
{
int cas;
scanf("%d",&cas);
while(cas--)
{
tim=tot=cnt=top=;
memset(be,,sizeof(be));
memset(head,,sizeof(head));
memset(dfn,,sizeof(dfn));
memset(low,,sizeof(low));
scanf("%d%d",&n,&m);
char s1[],s2[];
for(int i=;i<=m;i++)
{
scanf("%s%s",s1,s2);
int k1,k2;k1=k2=;
int len1=strlen(s1);
for(int i=;i<len1;i++)
{
k1=k1*+s1[i]-'';
}
int len2=strlen(s2);
for(int i=;i<len2;i++)
{
k2=k2*+s2[i]-'';
}
int op1,op2;
if(s1[]=='m')op1=;else op1=;
if(s2[]=='m')op2=;else op2=;
add(k1+(op1^)*n,k2+op2*n);
add(k2+(op2^)*n,k1+op1*n);
}
for(int i=;i<=*n;i++)if(!dfn[i])dfs(i);
bool flag=;
for(int i=;i<=n;i++)if(be[i]==be[i+n])flag=;
if(flag)puts("BAD");
else puts("GOOD");
}
return ;
}

bzoj 2199

按2-sat建完图之后,从每个点开始dfs一遍。

如果一个点能访问到它的对立点说明这个点不能选。

如果x的两个点都不能选说明无解,相当于在同一个强联通分量里。

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define N 2005
#define M 8005
using namespace std;
int n,m;
int head[N],ver[M],nxt[M],tot;
void add(int a,int b)
{
tot++;nxt[tot]=head[a];head[a]=tot;ver[tot]=b;return ;
}
int ans[N];
int v[N];
void dfs(int x)
{
v[x]=;
for(int i=head[x];i;i=nxt[i])
{
if(!v[ver[i]])dfs(ver[i]);
}
}
int main()
{
scanf("%d%d",&n,&m);
char s1[],s2[];
int t1,t2;
for(int i=;i<=m;i++)
{
scanf("%d",&t1);scanf("%s",s1);
scanf("%d",&t2);scanf("%s",s2);
int op1,op2;
if(s1[]=='Y')op1=;else op1=;
if(s2[]=='Y')op2=;else op2=;
add(t1+(op1^)*n,t2+op2*n);
add(t2+(op2^)*n,t1+op1*n);
}
bool flag=;
for(int i=;i<=n;i++)
{
int now=;
memset(v,,sizeof(v));
dfs(i);
if(v[i+n])now++;
memset(v,,sizeof(v));
dfs(i+n);
if(v[i])now+=;
ans[i]=now;
if(now==)flag=;
}
if(flag)puts("IMPOSSIBLE");
else
{
for(int i=;i<=n;i++)
{
if(!ans[i])putchar('?');
else if(ans[i]==)putchar('Y');
else putchar('N');
}
}
return ;
}

bzoj 1823: [JSOI2010]满汉全席 && bzoj 2199 : [Usaco2011 Jan]奶牛议会 2-sat的更多相关文章

  1. BZOJ 2199: [Usaco2011 Jan]奶牛议会

    2199: [Usaco2011 Jan]奶牛议会 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 375  Solved: 241[Submit][S ...

  2. BZOJ 2199: [Usaco2011 Jan]奶牛议会 [2-SAT 判断解]

    http://www.lydsy.com/JudgeOnline/problem.php?id=2199 题意:裸的2-SAT,但是问每个变量在所有解中是只能为真还是只能为假还是既可以为真又可以为假 ...

  3. BZOJ.2199.[USACO2011 Jan]奶牛议会(2-SAT)

    题目链接 建边不说了.对于议案'?'的输出用拓扑不好判断,直接对每个议案的结果DFS,看是否会出现矛盾 Tarjan也用不到 //964kb 76ms #include <cstdio> ...

  4. bzoj 2199: [Usaco2011 Jan]奶牛议会【2-SAT】

    好久没写2-SAT了啊,还以为是网络流 设点x为选,x'为不选,因为一头牛至少要满足一个条件,所以对于牛条件的两个点,选了一个不符合的点,就要选另一个符合的点,这样连两条边 然后枚举所有议案的选和不选 ...

  5. 2199: [Usaco2011 Jan]奶牛议会 2-sat

    链接 https://www.luogu.org/problemnew/show/P3007 https://www.lydsy.com/JudgeOnline/problem.php?id=2199 ...

  6. 【BZOJ2199】[Usaco2011 Jan]奶牛议会 2-SAT

    [BZOJ2199][Usaco2011 Jan]奶牛议会 Description 由于对Farmer John的领导感到极其不悦,奶牛们退出了农场,组建了奶牛议会.议会以“每头牛 都可以获得自己想要 ...

  7. BZOJ 1823: [JSOI2010]满汉全席( 2-sat )

    2-sat...假如一个评委喜好的2样中..其中一样没做, 那另一样就一定要做, 这样去建图..然后跑tarjan. 时间复杂度O((n+m)*K) ------------------------- ...

  8. 【刷题】BZOJ 1823 [JSOI2010]满汉全席

    Description 满汉全席是中国最丰盛的宴客菜肴,有许多种不同的材料透过满族或是汉族的料理方式,呈现在數量繁多的菜色之中.由于菜色众多而繁杂,只有极少數博学多闻技艺高超的厨师能够做出满汉全席,而 ...

  9. bzoj 1823: [JSOI2010]满汉全席

    #include<iostream> #include<cstdio> #include<cstring> using namespace std; ],next[ ...

随机推荐

  1. 【CentOS 7】nginx配置web服务器

    1,安装过程 [root@VM_1_14_centos ~]# cd /data/ [root@VM_1_14_centos data]# wget http://nginx.org/download ...

  2. Codeforces70 | Codeforces Beta Round #64 | 瞎讲报告

    目录 前言 正文 A B C D E 前言 这个毒瘤的517 放了Div1 然后D题是昨天讲的动态凸包(啊喂!我还没来的及去写 结果自己想的是二分凸包 (当然没有写出来 写完前两题之后就愉快地弃疗 C ...

  3. JavaScript中数组中遍历的方法

    前言 最近看了好几篇总结数组中遍历方法的文章,然而"纸上得来终觉浅",决定此事自己干.于是小小总结,算是自己练手了. 各种数组遍历方法 数组中常用的遍历方法有四种,分别是: for ...

  4. lsblk命令详解

    基础命令学习目录首页 lsblk 默认是树形方式显示: $lsblk NAME   MAJ:MIN RM   SIZE RO TYPE MOUNTPOINTsda      8:0    0   2. ...

  5. 插件使用-HighChart

    一.介绍 让数据可视化更简单,兼容 IE6+.完美支持移动端.图表类型丰富.方便快捷的 HTML5 交互性图表库. 官网(英):https://www.highcharts.com/download ...

  6. YQCB绩效表

    标准 队员 工作质量 20% 工作态度 20% 工作量 30% 工作难易程度 20% 团队意识 10% 总分 陈美琪 17 18 28 19 9 91 张晨阳 16 16 25 17 9 83 刘昭为 ...

  7. sql索引的填充因子多少最好,填充因子有什么用

    和索引重建最相关的是填充因子.当创建一个新索引,或重建一个存在的索引时,你可以指定一个填充因子,它是在索引创建时索引里的数据页被填充的数量.填充因子设置为100意味着每个索引页100%填满,50%意味 ...

  8. BETA5/7

    前言 我们居然又冲刺了·五 团队代码管理github 站立会议 队名:PMS 530雨勤(组长) 过去两天完成了哪些任务 前一份代码方案全部垮掉,我,重构啦 接下来的计划 加速加速,一定要完成速度模块 ...

  9. 【Coursera】线性回归和逻辑回归

    一.线性回归 1.批量梯度下降法 每次对参数进行一次迭代时,都要扫描一遍输入全集 算法可以收敛到局部最优值 当迭代多次之后,每次迭代参数的改变越小 2.随机梯度下降法 对于一个输入样本,对参数进行一次 ...

  10. Mysql中实现递归查询

    1.常规表字段 id,pid,lev,name 2.sql语句 DELIMITER // DROP PROCEDURE IF EXISTS Pro_GetColumnOrg//CREATE PROCE ...