MXNet 中的几个数据集
from mxnet import gluon
def transform(data, label):
return data.astype('float32') / 255., label.astype('float32')
mnist_train = gluon.data.vision.MNIST(train= True, transform= transform)
mnist_test = gluon.data.vision.MNIST(train= False, transform= transform)
C:\Anaconda3\lib\site-packages\mxnet\gluon\data\vision.py:118: DeprecationWarning: The binary mode of fromstring is deprecated, as it behaves surprisingly on unicode inputs. Use frombuffer instead
label = np.fromstring(fin.read(), dtype=np.uint8).astype(np.int32)
C:\Anaconda3\lib\site-packages\mxnet\gluon\data\vision.py:122: DeprecationWarning: The binary mode of fromstring is deprecated, as it behaves surprisingly on unicode inputs. Use frombuffer instead
data = np.fromstring(fin.read(), dtype=np.uint8)
下载几个数据集到本地磁盘
cifar_100
cifar_100_train = gluon.data.vision.CIFAR100(root= 'E:/Data/MXNet/cifar100')
cifar_100_test = gluon.data.vision.CIFAR100(root= 'E:/Data/MXNet/cifar100', train= False)
def show_images(images):
n = images.shape[0]
_, figs = plt.subplots(1, n, figsize=(15, 15))
for i in range(n):
figs[i].imshow(images[i].asnumpy())
figs[i].axes.get_xaxis().set_visible(False)
figs[i].axes.get_yaxis().set_visible(False)
plt.show()
data, label = cifar_100_train[1: 9]
print(data.shape, label)
show_images(data)
Downloading E:/Data/MXNet/cifar100\cifar-100-binary.tar.gz from https://apache-mxnet.s3-accelerate.dualstack.amazonaws.com/gluon/dataset/cifar100/cifar-100-binary.tar.gz...
C:\Anaconda3\lib\site-packages\mxnet\gluon\data\vision.py:252: DeprecationWarning: The binary mode of fromstring is deprecated, as it behaves surprisingly on unicode inputs. Use frombuffer instead
data = np.fromstring(fin.read(), dtype=np.uint8).reshape(-1, 3072+2)
(8, 32, 32, 3) [15 4 14 1 5 18 3 10]
cifar-10
cifar_10_train = gluon.data.vision.CIFAR10(root= 'E:/Data/MXNet/cifar10')
cifar_10_test = gluon.data.vision.CIFAR10(root= 'E:/Data/MXNet/cifar10', train= False)
def show_images(images):
n = images.shape[0]
_, figs = plt.subplots(1, n, figsize=(15, 15))
for i in range(n):
figs[i].imshow(images[i].asnumpy())
figs[i].axes.get_xaxis().set_visible(False)
figs[i].axes.get_yaxis().set_visible(False)
plt.show()
data, label = cifar_10_train[1: 9]
print(data.shape, label)
show_images(data)
Downloading E:/Data/MXNet/cifar10\cifar-10-binary.tar.gz from https://apache-mxnet.s3-accelerate.dualstack.amazonaws.com/gluon/dataset/cifar10/cifar-10-binary.tar.gz...
C:\Anaconda3\lib\site-packages\mxnet\gluon\data\vision.py:193: DeprecationWarning: The binary mode of fromstring is deprecated, as it behaves surprisingly on unicode inputs. Use frombuffer instead
data = np.fromstring(fin.read(), dtype=np.uint8).reshape(-1, 3072+1)
(8, 32, 32, 3) [9 9 4 1 1 2 7 8]
mnist_train
mnist_train = gluon.data.vision.MNIST(root= 'E:/Data/MXNet/mnist')
mnist_test = gluon.data.vision.MNIST(root= 'E:/Data/MXNet/mnist', train= False)
def show_images(images):
n = images.shape[0]
_, figs = plt.subplots(1, n, figsize=(15, 15))
for i in range(n):
figs[i].imshow(images[i].reshape((28, 28)).asnumpy())
figs[i].axes.get_xaxis().set_visible(False)
figs[i].axes.get_yaxis().set_visible(False)
plt.show()
data, label = mnist_train[1: 9]
print(data.shape, label)
show_images(data)
Downloading E:/Data/MXNet/mnist\train-images-idx3-ubyte.gz from https://apache-mxnet.s3-accelerate.dualstack.amazonaws.com/gluon/dataset/mnist/train-images-idx3-ubyte.gz...
Downloading E:/Data/MXNet/mnist\train-labels-idx1-ubyte.gz from https://apache-mxnet.s3-accelerate.dualstack.amazonaws.com/gluon/dataset/mnist/train-labels-idx1-ubyte.gz...
C:\Anaconda3\lib\site-packages\mxnet\gluon\data\vision.py:118: DeprecationWarning: The binary mode of fromstring is deprecated, as it behaves surprisingly on unicode inputs. Use frombuffer instead
label = np.fromstring(fin.read(), dtype=np.uint8).astype(np.int32)
C:\Anaconda3\lib\site-packages\mxnet\gluon\data\vision.py:122: DeprecationWarning: The binary mode of fromstring is deprecated, as it behaves surprisingly on unicode inputs. Use frombuffer instead
data = np.fromstring(fin.read(), dtype=np.uint8)
Downloading E:/Data/MXNet/mnist\t10k-images-idx3-ubyte.gz from https://apache-mxnet.s3-accelerate.dualstack.amazonaws.com/gluon/dataset/mnist/t10k-images-idx3-ubyte.gz...
Downloading E:/Data/MXNet/mnist\t10k-labels-idx1-ubyte.gz from https://apache-mxnet.s3-accelerate.dualstack.amazonaws.com/gluon/dataset/mnist/t10k-labels-idx1-ubyte.gz...
(8, 28, 28, 1) [0 4 1 9 2 1 3 1]
Fashion-MNIST
fashion_mnist_train = gluon.data.vision.FashionMNIST(root= 'E:/Data/MXNet/fashion_mnist')
fashion_mnist_test = gluon.data.vision.FashionMNIST(root= 'E:/Data/MXNet/fashion_mnist', train= False)
def show_images(images):
n = images.shape[0]
_, figs = plt.subplots(1, n, figsize=(15, 15))
for i in range(n):
figs[i].imshow(images[i].reshape((28, 28)).asnumpy())
figs[i].axes.get_xaxis().set_visible(False)
figs[i].axes.get_yaxis().set_visible(False)
plt.show()
def get_text_labels(label):
text_labels = [
't-shirt', 'trouser', 'pullover', 'dress,', 'coat',
'sandal', 'shirt', 'sneaker', 'bag', 'ankle boot'
]
return [text_labels[int(i)] for i in label]
data, label = fashion_mnist_train[0:9]
show_images(data)
print(get_text_labels(label))
Downloading E:/Data/MXNet/fashion_mnist\train-images-idx3-ubyte.gz from https://apache-mxnet.s3-accelerate.dualstack.amazonaws.com/gluon/dataset/fashion-mnist/train-images-idx3-ubyte.gz...
Downloading E:/Data/MXNet/fashion_mnist\train-labels-idx1-ubyte.gz from https://apache-mxnet.s3-accelerate.dualstack.amazonaws.com/gluon/dataset/fashion-mnist/train-labels-idx1-ubyte.gz...
C:\Anaconda3\lib\site-packages\mxnet\gluon\data\vision.py:118: DeprecationWarning: The binary mode of fromstring is deprecated, as it behaves surprisingly on unicode inputs. Use frombuffer instead
label = np.fromstring(fin.read(), dtype=np.uint8).astype(np.int32)
C:\Anaconda3\lib\site-packages\mxnet\gluon\data\vision.py:122: DeprecationWarning: The binary mode of fromstring is deprecated, as it behaves surprisingly on unicode inputs. Use frombuffer instead
data = np.fromstring(fin.read(), dtype=np.uint8)
Downloading E:/Data/MXNet/fashion_mnist\t10k-images-idx3-ubyte.gz from https://apache-mxnet.s3-accelerate.dualstack.amazonaws.com/gluon/dataset/fashion-mnist/t10k-images-idx3-ubyte.gz...
Downloading E:/Data/MXNet/fashion_mnist\t10k-labels-idx1-ubyte.gz from https://apache-mxnet.s3-accelerate.dualstack.amazonaws.com/gluon/dataset/fashion-mnist/t10k-labels-idx1-ubyte.gz...
['pullover', 'ankle boot', 'shirt', 't-shirt', 'dress,', 'coat', 'coat', 'sandal', 'coat']
MXNet 中的几个数据集的更多相关文章
- PyTorch中的MIT ADE20K数据集的语义分割
PyTorch中的MIT ADE20K数据集的语义分割 代码地址:https://github.com/CSAILVision/semantic-segmentation-pytorch Semant ...
- 将 Book-Crossing Dataset 书籍推荐算法中 CVS 格式测试数据集导入到MySQL数据库
本文内容 最近看<写给程序员的数据挖掘指南>,研究推荐算法,书中的测试数据集是 Book-Crossing Dataset 提供的亚马逊用户对书籍评分的真实数据.推荐大家看本书,写得不错, ...
- birt报表中使用多个数据集。
这个问题困扰了几天,也没搜到答案,由于工作需要,创建了两个数据集和两个表格,第一个数据集和表格之间没有任何问题.但是第二个数据集拖过去就显示不可用,除非拖到表格外面,当然也就没用了.一朋友说拖一个网格 ...
- Delphi中JSon SuperObject 使用:数据集与JSON对象互转
在delphi中,数据集是最常用数据存取方式.因此,必须建立JSON与TDataSet之间的互转关系,实现数据之间通讯与转换.值得注意的是,这只是普通的TDataset与JSON之间转换,由于CDS包 ...
- MXNet 中的 hybird_forward 的一个使用技巧
from mxnet.gluon import nn from mxnet import nd class SliceLike(nn.HybridBlock): def __init__(self, ...
- FineReport中如何制作树数据集来实现组织树报表
1. 问题描述 FineReport,组织树报表中由id与父id来实现组织树报表,若层级数较多时,对每个单元格设置过滤条件和形态会比较繁琐,因此FineReport提供了一种特殊的数据集——树数据集, ...
- 如何在nlp问题中定义自己的数据集
我之前大致写了一篇在pytorch中如何自己定义数据集合,在这里如何自定义数据集 不过这个例子使用的是image,也就是图像.如果我们用到的是文本呢,处理的是NLP问题呢? 在解决这个问题的时候,我在 ...
- 关于无法下载sklearn中的MNIST original数据集的问题
在使用Sklearn进行加载自带的数据集MNIST时,总是报错,代码及相应的错误显示如下: from sklearn.datasets import fetch_mldata mnist = fetc ...
- mxnet卷积神经网络训练MNIST数据集测试
mxnet框架下超全手写字体识别—从数据预处理到网络的训练—模型及日志的保存 import numpy as np import mxnet as mx import logging logging. ...
随机推荐
- Python核心编程——Chapter15
正则表达式在脚本语言里是最重要的一部分,这部分的题目真的不容怠慢. 开始这部分的题目的解答! 15.1识别下列字符串:bat,bit,but,hat,hit和hut. >>> imp ...
- Spring Boot1.5X升级到2.0
配置文件 大量的Servlet专属的server.* properties被移到了server.servlet下 拦截器 public class MyWebMvcConfigurerAdapter ...
- elasticsearch6.5集群环境搭建的一些坑
都说el配置很简单,确实比solr简单多了,不用手动配置一大堆,不过第一次配置也不轻松,因为马虎老是漏掉了许多地方 配置一个半小时才启动成功: 这里主要记录一下一些遇到的坑: 一 不能用root启动, ...
- linux arm mmu基础【转】
转自:http://blog.csdn.net/xiaojsj111/article/details/11065717 ARM MMU页表框架 先上一张arm mmu的页表结构的通用框图(以下的论述都 ...
- 【转】WCF光芒下的Web Service
WCF光芒下的Web Service 学习.NET的开发人员,在WCF的光芒照耀下,Web Service 似乎快要被人遗忘了.因为身边做技术的人一开口就是WCF多么的牛逼!废话不多,本人很久不写博客 ...
- maven profile 优先级
maven profile是有优先级别 也就是说在setting.xml的profile优先级比pom中同名的profile高. 可以使用 mvn help:active-profiles 这个命令是 ...
- 自定义ProgressBar的加载效果
三种方式实现自定义圆形页面加载中效果的进度条 To get a ProgressBar in the default theme that is to be used on white/light b ...
- 从一份配置清单详解 Nginx 服务器配置
概述 在前面< Nginx 服务器开箱体验> 一文中我们从开箱到体验,感受了一下 Nginx 服务器的魅力.Nginx 是轻量级的高性能 Web 服务器,提供了诸如 HTTP 代理和反 ...
- ggplot2使用初探
ggplot2已经成为了R语言中数据可视化的同义词, 这是一个强大的工具, 可以帮助我们制作优良的图表, 创造出令人吃惊的图片, 下面我们一起学习(本博文参考了知乎问题如何使用 ggplot2中黄宝臣 ...
- day06作业
一.方法 1.方法是完成特定功能的代码块. 修饰符 返回值类型 方法类型(参数类型 参数名1,参数类型 参数名2,...){ 方法体语句: return返回值: } 修饰符:目前就用publi ...