SAS系统被誉为国际上的标准软件系统,本文将详细介绍如何在SAS/EM模块中进行关联规则数据挖掘,使用的软件版本是SAS 9.1.3下的Enterprise Miner 4.3:

从SAS顶端的【解决方案(S)】菜单下调出企业数据挖掘(也可以通过在命令行输入miner):

SAS/EM的初始界面如下:

接下来,将数据挖掘外接程序示例数据集中的Associate表导入SAS逻辑库。先将xlsx文件另存为xls文件,再双击SAS资源管理器中的逻辑库,从【文件(F)】菜单下调出【导入数据】对话框:

点击【Next >】,选择xls文件及相应的工作表:

点击【Next >】,选择相应的SAS逻辑库并命名:

点击【Finish】,完成数据导入操作。回到SAS/EM界面,双击Untitled节点并重命名为Analysis。

鼠标左键按住上方工具栏中的【Input Data Source】节点不放,拖入右边的空白区域之后再放开鼠标,此时SAS/EM界面如下:

双击刚刚拖入的【Input Data Source】节点,选择前面导入的数据集Sasuser.Associate:

切换到【Variables】选项卡,在【Model Role】列【CATEGORY】行处点击右键,选择【Set Model Role】菜单:

分别将【CATEGORY】行设置为target,其他两行设置为rejected:

关闭对话框,询问是否保存变化时,点击【是(Y)】。若关闭SAS后重新打开EM项目时弹出Diagram被锁,则删除emproj文件夹中后缀是.lck的文件即可继续编辑。

鼠标左键按住上方工具栏中的【Association】节点不放,拖入右边的空白区域之后再放开鼠标。将鼠标移向旁边的【SASUSER.ASSOCIATE】节点周围,当变成十字型时,鼠标左键按住不放,拖向【Association】节点,此时SAS/EM界面如下:

双击右边的【Association】节点在SAS中进行数据挖掘之关联规则图标,切换到【General】选项卡的界面如下:

默认的分析模式是【By Context】,它根据输入数据源的结点信息选择合适的分析方法。如果输入数据集包括一个id变量和target变量,该结点自动执行关联分析。下面的选项是设置关联最小支持度、项集最大数目和规则最小置信度。

关闭【Association】对话框,右键【Association】节点图标,在弹出的下拉选项中选择【Run】,得到运行结果如下:

此时在【Rules】选项卡上右键单击,会弹出查看图形菜单:

选择【图形(G)】之后,将窗口拉伸到合适的宽度,有些图例需要拉到更宽才会显示出来,结果界面如下:

前 面结果表中的19条关联规则都体现在这张图里面,此图的信息量比较大。我们以右下方的圆圈为例来解读它的含义:从纵横坐标轴来看,此圆圈对应表中的第11 条关联规则,即{Road Bikes ==> Jerseys};从圆圈标示对应的图例来看,它表示置信度(Confidence)在20.24%到24.13%区间内,从表中可以看出实际值为 20.26%;从圆圈的颜色对应的图例来看,它表示支持度(Support)在3.12%到3.78%区间内,从表中可以看出实际值为3.68%;圆圈的 大小表示提升度(Lift)的大小,从表中可以看出实际值为1.34。

上面提到的置信度(Confidence)、支持度(Support)、提升度(Lift)是关联发现的三个重要评价指标,它们都是怎么计算出来的呢?我们还是以前面提到的第11条关联规则{Road Bikes ==> Jerseys}为例进行说明:

先简单统计一下数据源中相关数据,总共13050个订单,其中有购买Road Bikes订单的2369个,有购买Jerseys的订单1978个,同时购买了Road Bikes和Jerseys的订单480个,计算以下几个概率:

P(Road Bikes) = 2369/13050 = 18.15%

P(Jerseys) = 1978/13050 = 15.16%

P(Road Bikes & Jerseys) = 480/13050 = 3.68%

置 信度Confidence(Road Bikes ==> Jerseys)表示在客户购买Road Bikes的条件下,同时又购买Jerseys的概率,即P(Jerseys|Road Bikes) = P(Road Bikes & Jerseys)/P(Road Bikes) = 3.68%/18.15% = 20.26%。置信度越高,说明相关联的商品被交叉销售的机会越大。

支 持度Support(Road Bikes ==> Jerseys)表示客户同时购买过Road Bikes和Jerseys的概率,即P(Road Bikes & Jerseys) = 3.68%。支持度越高,说明相关联的商品被同时购买的越频繁。

提 升度Lift(Road Bikes ==> Jerseys)表示使用关联规则可以提升的倍数,是置信度与期望置信度的比值,公式为Confidence(Road Bikes ==> Jerseys)/P(Jerseys) = 20.26%/15.16% = 1.34。

在进行关联规则的数据挖掘中,通过指定这三个标准的最小值,三个标准的值都大于临界值的关联规则就被列出。而且以上这三个标准缺一不可,孤立地使用这三个标准中的任意一个,都可能导致错误结果。

当 某种常见现象出现在关联规则右边时,高置信度也会产生误导。比如以下几条规则的置信度都比较高,但几乎是没有作用的规则:“买方便面则买牛奶”、“买牙刷 则买牛奶”、“喜欢野外休闲则会买牛奶”等等。这一类规则的置信度和支持度都会比较高,因为很少有人会不买牛奶。但这一类规则没有任何作用。

在关联规则结果界面是查看表的情况下,还可以在查看菜单下选择【生成表子集(S)...】,通过设定筛选出想要的关联规则出来,例如下图是在【Confidence】选项卡中设定最小置信度为26:

点击【Process】后,结果将筛选出8条关联规则。

在置信度(Confidence)、支持度(Support)、提升度(Lift)这三个重要评价指标之中,提升度是最有可能单独使用而不致产生误导的标准,因为它可以测量关联规则增进预测右边现象的能力。但如果该规则的支持度很低,该规则也可能造成误导。

除 了以上三个对关联规则的数量标准外,一条关联规则真正可取,还需要具备以下两个条件:一是该规则必须是人们常识之外、意料之外的关联,二是该规则必须具有 潜在的作用,而目前任何技术与算法都无法判断哪些知识属于常识,也无法判断哪些属于可能具有潜在作用的规则,因此关联规则的挖掘离不开人的作用。

SAS->关联分析实践的更多相关文章

  1. 关联分析FPGrowth算法在JavaWeb项目中的应用

    关联分析(关联挖掘)是指在交易数据.关系数据或其他信息载体中,查找存在于项目集合或对象集合之间的频繁模式.关联.相关性或因果结构.关联分析的一个典型例子是购物篮分析.通过发现顾客放入购物篮中不同商品之 ...

  2. 【GWAS文献解读】疟原虫青蒿素抗药性的全基因组关联分析

    英文名:Genetic architecture of artemisinin-resistant Plasmodium falciparum 中文名:疟原虫青蒿素抗药性的全基因组关联分析 期刊:Na ...

  3. Apriori 关联分析算法原理分析与代码实现

    前言 想必大家都听过数据挖掘领域那个经典的故事 - "啤酒与尿布" 的故事. 那么,具体是怎么从海量销售信息中挖掘出啤酒和尿布之间的关系呢? 这就是关联分析所要完成的任务了. 本文 ...

  4. 全基因组关联分析(Genome-Wide Association Study,GWAS)流程

    全基因组关联分析流程: 一.准备plink文件 1.准备PED文件 PED文件有六列,六列内容如下: Family ID Individual ID Paternal ID Maternal ID S ...

  5. 关联分析---Apriori

    关联分析是一种在大规模数据集中寻找有趣关系的任务,这些关系有两种形式:频繁项集和关联规则.频繁项集是经常出现在一起的物品的集合,关联规则暗示两种物品之间可能存在的很强的关系. 如何寻找数据集中的频繁或 ...

  6. 机器学习实战 - 读书笔记(11) - 使用Apriori算法进行关联分析

    前言 最近在看Peter Harrington写的"机器学习实战",这是我的学习心得,这次是第11章 - 使用Apriori算法进行关联分析. 基本概念 关联分析(associat ...

  7. Activity启动模式 及 Intent Flags 与 栈 的关联分析

     http://blog.csdn.net/vipzjyno1/article/details/25463457    Android启动模式Flags栈Task   目录(?)[+] 什么是栈 栈 ...

  8. 使用Apriori算法和FP-growth算法进行关联分析

    系列文章:<机器学习实战>学习笔记 最近看了<机器学习实战>中的第11章(使用Apriori算法进行关联分析)和第12章(使用FP-growth算法来高效发现频繁项集).正如章 ...

  9. 【转】Activity启动模式 及 Intent Flags 与 栈 的关联分析

    http://blog.csdn.net/vipzjyno1/article/details/25463457    在学习Android的过程中,Intent是我们最常用Android用于进程内或进 ...

随机推荐

  1. 2018.08.17 洛谷P3110 [USACO14DEC]驮运(最短路)

    传送门 一道sb最短路,从两个起点和终点跑一边最短路之后直接枚举两人的汇合点求最小值就行了. 代码: #include<bits/stdc++.h> #define N 40005 #de ...

  2. qmake-how to

    简单例子 假设已经实现如下程序: hello.cpphello.hmain.cpp 首先,使用编辑器,在上述文件目录下创建文件hello.pro.然后加入几行语句告诉qmake项目中的源文件和头文件. ...

  3. Scrapy爬取美女图片第三集 代理ip(上) (原创)

    首先说一声,让大家久等了.本来打算那天进行更新的,可是一细想,也只有我这样的单身狗还在做科研,大家可能没心思看更新的文章,所以就拖到了今天.不过忙了521,522这一天半,我把数据库也添加进来了,修复 ...

  4. 【OSGI】1.初识OSGI-到底什么是OSGI

    目前,业内关于OSGI技术的学习资源或者技术文档还是很少的.我在某宝网搜索了一下“OSGI”的书籍,结果倒是有,但是种类少的可怜,而且几乎没有人购买. 因为工作的原因我需要学习OSGI,所以我不得不想 ...

  5. 抱SQL SERVER大腿之我爱用视图(对大数据量的管理)

    我们拥有一个巨大的表,两千多万条记录.也许在行家眼里,两千多万条记录顶多算条毛,不过这条毛也忒粗壮了一点:我们的数据库占用的空间已经达到5G多了.不要以为是日志文件在搞鬼,日志文件可以自动收缩的,最多 ...

  6. MYSQL的数据连接超时时间设置

    大规模多线程操作事务的时候,有时候打开一个链接,会进行等待,这时候如果数据库的超时时间设置的过短,就可能会出现,数据链接自动被释放,当然设置过大也不好,慢SQL或其他因素引起的链接过长,导致整个系统被 ...

  7. jQuery插件开发的五种形态小结

    关于jQuery插件的开发自己也做了少许研究,自己也写过多个插件,在自己的团队了也分享过一次关于插件的课.开始的时候整觉的很复杂的代码,现在再次看的时候就清晰了许多.这里我把我自己总结出来的东西分享出 ...

  8. C# 使用ftp下载一个文件夹下的所有文件,包括子目录文件夹

    这篇博客给大家补充一个方法,就是得到一个目录下的所有文件名称.在前端调用,大家写一个递归去遍历就可以了,我在这里就不在写了.具体ftp下载的方法在我的另一篇博客里有,需要的可以去看一下. /// &l ...

  9. C# 委托和事件,简单示例说明问题

    先看看示例效果 按照国际惯例,得先说说概念. 委托(C# 编程指南) 事件(C# 编程指南) 以上内容来自MSDN. 委托源码 [委托] 概念和代码都有了.剩下的就是应用了,要是只知道概念不会用,那还 ...

  10. day 82 URL分发

    一 .admin 流程 (1) 启动 autodiscover_modules('admin', register_to=site) (2) 注册 单例模式 admin.site=AdminSite( ...