cifar数据集介绍及到图像转换的实现
CIFAR是一个用于普通物体识别的数据集。CIFAR数据集分为两种:CIFAR-10和CIFAR-100。The CIFAR-10 and CIFAR-100 are labeled subsets of the 80 million tiny images dataset. They were collected by Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton.
CIFAR-10由60000张大小为32*32的三通道彩色图像组成,被分为10类,分别为airplane、automobile、bird、cat、deer、dog、frog、horse、ship、truck。每类由6000张图像。其中50000张图像用来训练,10000张图像用来测试。数据集分为5个训练块和1个测试块,每个块包含10000张图像.训练集每类包含5000张图像,测试集每类包含1000张图像.
CIFAR-100由60000张大小为32*32的三通道彩色图像组成,分为20个大类,每个大类又包含5个小类,总共100个小类。每个小类包含600张图像,其中500张用于训练,100张用于测试。
从https://www.cs.toronto.edu/~kriz/cifar.html 下载CIFAR C版本的二进制数据:
(1)、CIFAR-10:下载cifar-10-binary.tar.gz,解压缩,共8个文件,batches.meta.txt中存放10个种类名,data_batch_1.bin… data_batch_5.bin、test_batch.bin共6个文件,每个文件中存放10000张图像数据。
(2)、CIFAR-100:下载cifar-100-binary.tar.gz,解压缩,共5个文件,coarse_label_names.txt中存放20个大类名,fine_label_names.txt中存放100个小类名,train.bin中存放50000张训练图像,test.bin中存放10000张测试图像。
CIFAR数据集到图像转换实现的代码如下:
static void write_image_cifar(const cv::Mat& bgr, const std::string& image_save_path, const std::vector<int>& label_count, int label_class) { std::string str = std::to_string(label_count[label_class]); if (label_count[label_class] < 10) { str = "0000" + str; } else if (label_count[label_class] < 100) { str = "000" + str; } else if (label_count[label_class] < 1000) { str = "00" + str; } else if (label_count[label_class] < 10000) { str = "0" + str; } else { fprintf(stderr, "save image name fail\n"); return; } str = std::to_string(label_class) + "_" + str + ".png"; str = image_save_path + str; cv::imwrite(str, bgr); } static void read_cifar_10(const std::string& bin_name, const std::string& image_save_path, int image_count, std::vector<int>& label_count) { int image_width = 32; int image_height = 32; std::ifstream file(bin_name, std::ios::binary); if (file.is_open()) { for (int i = 0; i < image_count; ++i) { cv::Mat red = cv::Mat::zeros(image_height, image_width, CV_8UC1); cv::Mat green = cv::Mat::zeros(image_height, image_width, CV_8UC1); cv::Mat blue = cv::Mat::zeros(image_height, image_width, CV_8UC1); int label_class = 0; file.read((char*)&label_class, 1); label_count[label_class]++; file.read((char*)red.data, 1024); file.read((char*)green.data, 1024); file.read((char*)blue.data, 1024); std::vector<cv::Mat> tmp{ blue, green, red }; cv::Mat bgr; cv::merge(tmp, bgr); write_image_cifar(bgr, image_save_path, label_count, label_class); } file.close(); } } int CIFAR10toImage() { std::string images_path = "E:/GitCode/NN_Test/data/database/CIFAR/CIFAR-10/"; // train image std::vector<int> label_count(10, 0); for (int i = 1; i <= 5; i++) { std::string bin_name = images_path + "data_batch_" + std::to_string(i) + ".bin"; std::string image_save_path = "E:/GitCode/NN_Test/data/tmp/cifar-10_train/"; int image_count = 10000; read_cifar_10(bin_name, image_save_path, image_count, label_count); } // test image std::fill(&label_count[0], &label_count[0] + 10, 0); std::string bin_name = images_path + "test_batch.bin"; std::string image_save_path = "E:/GitCode/NN_Test/data/tmp/cifar-10_test/"; int image_count = 10000; read_cifar_10(bin_name, image_save_path, image_count, label_count); // save big imags images_path = "E:/GitCode/NN_Test/data/tmp/cifar-10_train/"; int width = 32 * 20; int height = 32 * 10; cv::Mat dst(height, width, CV_8UC3); for (int i = 0; i < 10; i++) { for (int j = 1; j <= 20; j++) { int x = (j - 1) * 32; int y = i * 32; cv::Mat part = dst(cv::Rect(x, y, 32, 32)); std::string str = std::to_string(j); if (j < 10) str = "0000" + str; else str = "000" + str; str = std::to_string(i) + "_" + str + ".png"; std::string input_image = images_path + str; cv::Mat src = cv::imread(input_image, 1); if (src.empty()) { fprintf(stderr, "read image error: %s\n", input_image.c_str()); return -1; } src.copyTo(part); } } std::string output_image = images_path + "result.png"; cv::imwrite(output_image, dst); return 0; } static void write_image_cifar(const cv::Mat& bgr, const std::string& image_save_path, const std::vector<std::vector<int>>& label_count, int label_class_coarse, int label_class_fine) { std::string str = std::to_string(label_count[label_class_coarse][label_class_fine]); if (label_count[label_class_coarse][label_class_fine] < 10) { str = "0000" + str; } else if (label_count[label_class_coarse][label_class_fine] < 100) { str = "000" + str; } else if (label_count[label_class_coarse][label_class_fine] < 1000) { str = "00" + str; } else if (label_count[label_class_coarse][label_class_fine] < 10000) { str = "0" + str; } else { fprintf(stderr, "save image name fail\n"); return; } str = std::to_string(label_class_coarse) + "_" + std::to_string(label_class_fine) + "_" + str + ".png"; str = image_save_path + str; cv::imwrite(str, bgr); } static void read_cifar_100(const std::string& bin_name, const std::string& image_save_path, int image_count, std::vector<std::vector<int>>& label_count) { int image_width = 32; int image_height = 32; std::ifstream file(bin_name, std::ios::binary); if (file.is_open()) { for (int i = 0; i < image_count; ++i) { cv::Mat red = cv::Mat::zeros(image_height, image_width, CV_8UC1); cv::Mat green = cv::Mat::zeros(image_height, image_width, CV_8UC1); cv::Mat blue = cv::Mat::zeros(image_height, image_width, CV_8UC1); int label_class_coarse = 0; file.read((char*)&label_class_coarse, 1); int label_class_fine = 0; file.read((char*)&label_class_fine, 1); label_count[label_class_coarse][label_class_fine]++; file.read((char*)red.data, 1024); file.read((char*)green.data, 1024); file.read((char*)blue.data, 1024); std::vector<cv::Mat> tmp{ blue, green, red }; cv::Mat bgr; cv::merge(tmp, bgr); write_image_cifar(bgr, image_save_path, label_count, label_class_coarse, label_class_fine); } file.close(); } } int CIFAR100toImage() { std::string images_path = "E:/GitCode/NN_Test/data/database/CIFAR/CIFAR-100/"; // train image std::vector<std::vector<int>> label_count; label_count.resize(20); for (int i = 0; i < 20; i++) { label_count[i].resize(100); std::fill(&label_count[i][0], &label_count[i][0] + 100, 0); } std::string bin_name = images_path + "train.bin"; std::string image_save_path = "E:/GitCode/NN_Test/data/tmp/cifar-100_train/"; int image_count = 50000; read_cifar_100(bin_name, image_save_path, image_count, label_count); // test image for (int i = 0; i < 20; i++) { label_count[i].resize(100); std::fill(&label_count[i][0], &label_count[i][0] + 100, 0); } bin_name = images_path + "test.bin"; image_save_path = "E:/GitCode/NN_Test/data/tmp/cifar-100_test/"; image_count = 10000; read_cifar_100(bin_name, image_save_path, image_count, label_count); // save big imags images_path = "E:/GitCode/NN_Test/data/tmp/cifar-100_train/"; int width = 32 * 20; int height = 32 * 100; cv::Mat dst(height, width, CV_8UC3); std::vector<std::string> image_names; for (int j = 0; j < 20; j++) { for (int i = 0; i < 100; i++) { std::string str1 = std::to_string(j); std::string str2 = std::to_string(i); std::string str = images_path + str1 + "_" + str2 + "_00001.png"; cv::Mat src = cv::imread(str, 1); if (src.data) { for (int t = 1; t < 21; t++) { if (t < 10) str = "0000" + std::to_string(t); else str = "000" + std::to_string(t); str = images_path + str1 + "_" + str2 + "_" + str + ".png"; image_names.push_back(str); } } } } for (int i = 0; i < 100; i++) { for (int j = 0; j < 20; j++) { int x = j * 32; int y = i * 32; cv::Mat part = dst(cv::Rect(x, y, 32, 32)); cv::Mat src = cv::imread(image_names[i * 20 + j], 1); if (src.empty()) { fprintf(stderr, "read image fail: %s\n", image_names[i * 20 + j].c_str()); return -1; } src.copyTo(part); } } std::string output_image = images_path + "result.png"; cv::imwrite(output_image, dst); cv::Mat src = cv::imread(output_image, 1); if (src.empty()) { fprintf(stderr, "read result image fail: %s\n", output_image.c_str()); return -1; } for (int i = 0; i < 4; i++) { cv::Mat dst = src(cv::Rect(0, i * 800, 640, 800)); std::string str = images_path + "result_" + std::to_string(i + 1) + ".png"; cv::imwrite(str, dst); } return 0; }
cifar-10转换的结果如下:
cifar-100转换的结果如下:
GitHub:https://github.com/fengbingchun/NN_Test
cifar数据集介绍及到图像转换的实现的更多相关文章
- Pascal VOC & COCO数据集介绍 & 转换
目录 Pascal VOC & COCO数据集介绍 Pascal VOC数据集介绍 1. JPEGImages 2. Annotations 3. ImageSets 4. Segmentat ...
- OpenCV 编程简单介绍(矩阵/图像/视频的基本读写操作)
PS. 因为csdn博客文章长度有限制,本文有部分内容被截掉了.在OpenCV中文站点的wiki上有可读性更好.而且是完整的版本号,欢迎浏览. OpenCV Wiki :<OpenCV 编程简单 ...
- 机器学习数据集,主数据集不能通过,人脸数据集介绍,从r包中获取数据集,中国河流数据集
机器学习数据集,主数据集不能通过,人脸数据集介绍,从r包中获取数据集,中国河流数据集 选自Microsoft www.tz365.Cn 作者:Lee Scott 机器之心编译 参与:李亚洲.吴攀. ...
- Base64图片编码原理,base64图片工具介绍,图片在线转换Base64
Base64图片编码原理,base64图片工具介绍,图片在线转换Base64 DataURI 允许在HTML文档中嵌入小文件,可以使用 img 标签或 CSS 嵌入转换后的 Base64 编码,减少 ...
- caffe之数据集介绍
数据集:http://bigdata.51cto.com/art/201702/531276.htm 计算机视觉 MNIST: 最通用的健全检查.25x25 的数据集,中心化,B&W 手写数字 ...
- 详细介绍Base64的编码转换方式
下面,详细介绍Base64的编码转换方式. 所谓Base64,就是说选出64个字符----小写字母a-z.大写字母A-Z.数字0-9.符号"+"."/"(再加上 ...
- <p><span style="font-size:14px">近期须要批量将PNM格式的文件转换成GIF文件。我尝试了例如以下的图像转换工具:</span></p>
近期须要批量将PNM格式的文件转换成GIF文件.我尝试了例如以下的图像转换工具: ImageBatch:全然免费,但只支持PNG JPEG BMP GIF四种格式 OfficeConverter:在线 ...
- TensorFlow 卷积神经网络手写数字识别数据集介绍
欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/,学习更多的机器学习.深度学习的知识! 手写数字识别 接下来将会以 MNIST 数据集为例,使用卷积层和池 ...
- 将图标LOGO之类的图形图像转换成字体调用方法大全
借鉴百度对此标题的评价: 使用字体图标的优势 字体图标除了图像清晰度之外,比位图还有哪些优势呢. 适用性:一个图标字体比一系列的图像(特别是在Retina屏中使用双倍大小的图像)要小.一旦图标字体加载 ...
随机推荐
- C# 数据上传(自用笔记)
#region 数据上传 [HttpPost] public ActionResult UploadFile() { HttpFileCollectionBase files = Request.Fi ...
- elastic search报错——“failed to obtain node locks”
启动时报错信息: 这里写图片描述 寻找主要信息:failed to obtain node locks这里写图片描述简单理解为:绑定节点失败!!! 百度后,好多人同样遇到了这个问题,导致的原因可能是因 ...
- 【数据结构】 顺序表查找(折半查找&&差值查找)
#include <stdio.h> #include <stdlib.h> #include <time.h> #define MAXSIZE 10 首先构造一个 ...
- Ubuntu 14.04 修改时区
执行下面命令,并按照提示选择"Asia/Shanghai": sudo dpkg-reconfigure tzdata 正常执行结果为: Current default time ...
- 1. 安装Oracle,配置环境 2. 实现查询From子句 3. 实现查询where子句 4. 实现查询order by子句
一.环境安装1. 登录:以管理员身份登录 sqlplus 登录名/密码 管理员身份登录:sqlplus system/1234562. 登录后,导入案例.下载scott.sql文件,执行下面一行的命令 ...
- You may experience an access violation when you access an STL object through a pointer or reference in a different DLL or EXE
Symptoms When accessing an STL object created in one DLL or EXE through a pointer or reference in a ...
- 【跨域】#001 JSONP原理解析【总结】
一.JSONP 是什么? 1.1 概念 JSONP(JSON with Padding)是资料格式 JSON 的一种“使用模式”,可以让网页从别的网域要资料.由于同源策略,一般来说位于 server1 ...
- 团队作业1——团队展示&教辅宝
1.队名:PHILOSOPHER 2.队员学号: [组长]金盛昌(201421122043).刘文钊(20142112255).陈笑林(201421122042). 张俊逸(201421122044) ...
- mysql5.7.22的安装与配置(适用mysql5.7.20至mysql5.7.22版本)
一.解压Mysql5.7.20安装包,刚解压是没有 data 这个文件夹的 二.配置mysql环境变量,创建MYSQL_HOME,然后在Path上添加%MYSQL_HOME%\bin; 三.配置m ...
- 理解活在Iphone中的那些App (二)
app是什么,为什么而存在 存在即合理的说法,已经被批臭批烂了.所以,作为一个程序员不能简简单单的因为上面来了一个需求,就完成一个需求.让做一个app就做一个app,只是简单的认为存在即合理,头让写就 ...