UVA.12169 Disgruntled Judge ( 拓展欧几里得 )
UVA.12169 Disgruntled Judge ( 拓展欧几里得 )
题意分析
给出T个数字,x1,x3……x2T-1。并且我们知道这x1,x2,x3,x4……x2T之间满足xi = (a * xi-1 + b ) MOD 10001, 求出x2,x4……x2T.
由于本题中的a和b是未知的,所以需要根据已知条件求出a和b,据说有人暴力枚举a和b然后过了。 所以我来换另一种方法。
其实我们可以枚举a,并根据x1,x3算出求出可行的b的值。如何做到呢?
首先我们已经知道
x2 = (a * x1 + b) MOD 10001
x3 = (a * x2 + b) MOD 10001
于是就可以把第一个式子带入到第二个式子中,消去x2,进而得到
x3 = ( a * (a * x1 + b) + b ) MOD 10001
而这个式子,可以进一步转化为
思考一下为什么,等式左边是10001 * k + x3, 对10001 取模后,不就是x3吗? 一开始没有想到,要熟记这个转化!
对于式子x3 + 10001 * k = ( a * (a * x1 + b) + b ) ,继续稍作化简,可以得到
(a+1) * b - 10001 * k = x3 - a * a * x1
而这个式子,就可以用拓展欧几里得算法,求得一组可行解(b,k),我们比较关心的是b的值,在计算完成之后,要记得检验 (x3 - a * a * x1) / gcd( (a+1),10001) 是否为整数,若是的话,就说明这对(a,b) 对于x1,x3是可行的。
然而题目还给出了x5……等等的奇数序列,我们在依次递推的时候,若发现求出的x5,x7……与原数列不相等,那么说明求出的(a,b)并不work,还要重新求解,题目保证一定有解。
代码总览
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <vector>
#define ll long long
#define nmax 220
#define MOD 10001
using namespace std;
ll a,b,k,c,d;
int n;
ll x[nmax];
void exgcd(ll a, ll b, ll& d, ll& x, ll &y){
if(!b){
d = a,x = 1,y = 0;
}else{
exgcd(b, a % b, d, y, x);
y -= x * (a / b);
}
}
bool solve(){
c = x[3] - a*a*x[1];
exgcd(a+1,MOD,d,b,k);
if(c % d == 0){
b = c / d * b;
return true;
}
else return false;
}
int main()
{
//freopen("in.txt","r",stdin);
while(scanf("%d",&n) != EOF){
for(int i =1;i<=2*n;i+=2) scanf("%lld",&x[i]);
bool isfindall = false;
for( a = 0;a < MOD;++a){
if(solve()){
for(int j = 2;j<=2*n;++j){
isfindall = false;
ll tmp = ( (a * x[j-1]) + b)%MOD;
if( (j%2!=0) && tmp != x[j]) break;
else x[j] = tmp;
if(j == 2*n) isfindall = true;
}
if(isfindall) break;
}
}
for(int i = 2;i<=2*n;i+=2){
printf("%lld\n",x[i]);
}
}
return 0;
}
UVA.12169 Disgruntled Judge ( 拓展欧几里得 )的更多相关文章
- UVA 12169 Disgruntled Judge 扩展欧几里得
/** 题目:UVA 12169 Disgruntled Judge 链接:https://vjudge.net/problem/UVA-12169 题意:原题 思路: a,b范围都在10000以内. ...
- hdu 2769 uva 12169 Disgruntled Judge 拓展欧几里德
//数据是有多水 连 10^10的枚举都能过 关于拓展欧几里德:大概就是x1=y2,y1=x2-[a/b]y2,按这个规律递归到gcd(a,0)的形式,此时公因数为a,方程也变为a*x+0*y=gcd ...
- UVA 12169 Disgruntled Judge 枚举+扩展欧几里得
题目大意:有3个整数 x[1], a, b 满足递推式x[i]=(a*x[i-1]+b)mod 10001.由这个递推式计算出了长度为2T的数列,现在要求输入x[1],x[3],......x[2T- ...
- UVa 12169 Disgruntled Judge 紫书
思路还是按照紫书,枚举a,得出b, 然后验证. 代码参考了LRJ的. #include <cstdio> #include <iostream> using namespace ...
- UVa 12169 - Disgruntled Judge(拓展欧几里德)
链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
- UVA 12169 Disgruntled Judge【扩展欧几里德】
题意:随机选取x1,a,b,根据公式xi=(a*xi-1+b)%10001得到一个长度为2*n的序列,奇数项作为输入,求偶数项,若有多种,随机输出一组答案. 思路:a和b均未知,可以考虑枚举a和b,时 ...
- UVA 12169 Disgruntled Judge
我该怎么说这道题呢...说简单其实也简单,就枚举模拟,开始卡了好久,今天看到这题没a又写了遍,看似会超时的代码交上去a了,果然实践是检验真理的唯一标准... #include <iostream ...
- UVA 12169 Disgruntled Judge(Extended_Euclid)
用扩展欧几里德Extended_Euclid解线性模方程,思路在注释里面了. 注意数据范围不要爆int了. /********************************************* ...
- uva 10548 - Find the Right Changes(拓展欧几里得)
题目链接:uva 10548 - Find the Right Changes 题目大意:给定A,B,C,求x,y,使得xA+yB=C,求有多少种解. 解题思路:拓展欧几里得,保证x,y均大于等于0, ...
随机推荐
- OpenFastPath(1):快平面接口是否支持多ip
1.配置环境 fp0接口上配置两个IP地址: fp0 Link encap:Ethernet HWaddr 00:0c:29:30:38:db inet addr:192.168.56. ...
- CentOS 6.7 安装配置 nagios
一.简介 Nagios是一款开源的免费网络监视工具,能有效监控Windows.Linux和Unix的主机状态,交换机路由器等网络设置,打印机等.在系统或服务状态异常时发出邮件或短信报警,第一时间 ...
- Hadoop Streaming框架使用(二)
上一篇文章介绍了Streaming的各种参数,本文具体介绍使用方法. 提交hadoop任务示例: $HADOOP_HOME/bin/hadoop streaming \ -input /user/te ...
- Vue 事件处理
原生的js事件处理 原生的js事件处理,可以分为:直接内联执行代码,或者绑定事件函数. 在内联的事件处理函数内部或者事件绑定的方法内部的作用域中的this都是指向当前的dom对象.如何在vue绑定的元 ...
- 使用sass与compass合并雪碧图(二)
上一篇文章介绍了怎样使用compass合并雪碧图,生成的icons.css文件中单位是px,PC端可以直接在html文件中使用,但在移动端,我们需要根据不同分辨率的屏幕,来缩放图片大小,显然使用px单 ...
- 2-Eighth Scrum Meeting20151208
任务分配 闫昊: 今日完成:和唐彬讨论研究上届的网络接口代码. 明日任务:商讨如何迁移ios代码到android平台. 唐彬: 今日完成:和闫昊讨论研究上届的网络接口代码. 明日任务:商讨如何迁移io ...
- OO第三次阶段总结
(1)调研,规格化设计的大致发展和为什么得到人类重视 结构化程序设计(英语:Structured programming),一种编程范型.它采用子程序(函数就是一种子程序).代码区块.for循环以及w ...
- 第二阶段Sprint6
昨天:设置统一保存路径为内存卡,实现可以选择播放已有的视频 今天:将“录制”及“保存”整合到一起,修复出现的Bug,使之能够正常运行. 遇到的问题:感觉调的摄像头录制的画面不好,这怎么办啊?
- 1001. A+B Format (20)题解
git链接 作业描述 Calculate a + b and output the sum in standard format -- that is, the digits must be sepa ...
- Internet History, Technology and Security (Week3)
Week3. Welcome to week 3! This is our fourth and final week of History where we make the connection ...