Time Limit: 10 Sec Memory Limit: 162 MB

Description

  

  有n个木块排成一行,从左到右依次编号为1~n。你有k种颜色的油漆,其中第i种颜色的油漆足够涂ci个木块。

所有油漆刚好足够涂满所有木块,即c1+c2+...+ck=n。相邻两个木块涂相同色显得很难看,所以你希望统计任意两

个相邻木块颜色不同的着色方案。

  

Input

  

  第一行为一个正整数k,第二行包含k个整数c1, c2, ... , ck。

  

Output

  

  输出一个整数,即方案总数模1,000,000,007的结果。

  

Sample Input

  

  3

  1 2 3

  

Sample Output

  

  10

  

HINT

  

  100%的数据满足:1 <= k <= 15, 1 <= ci <= 5

  

  

  

Solution

  

  ​ 是不是还想状压啊,行不通的,状态数太多了。

  

​   看看还有什么是比较小的:\(c_i\)看起来很小。

  

​   仔细想一想会发现,如果两种颜料的可使用次数相同,那么它们可以归为一类颜料。

  

  ​ 从可使用次数分类入手,设状态\(f[a_1][a_2][a_3][a_4][a_5][x]\),表示当前已使用\(i\)次的颜料有\(a_i\)种,且下一步将要选择当前可使用\(x\)次的颜料,的总方案数。

  

  ​ 干脆就自顶向下使用记忆化搜索DP实现。每个状态从哪里转移就很显然了:可以挑5类颜料中的一种,那么转移的来源就是\(\{a_1-1,a_2,a_3,a_4,a_5\}\),\(\{a_1+1,a_2-1,a_3,a_4,a_5\}\),\(\{a_1,a_2+1,a_3-1,a_4,a_5\}\),\(\{a_1,a_2,a_3+1,a_4-1,a_5\}\),\(\{a_1,a_2,a_3,a_4+1,a_5-1\}\)。

  

​   关键是转移的系数和递归参数。简单的讲,每类颜料\(i\)有\(a_i\)种不同的选法,但这没有考虑到题目要求两两不同给的限制。

  

​   注意每个状态的\(a_i\)是相对于当前状态下的信息,而\(x\)则是上一层状态给你做出的限制。你枚举当前这一步将要挑哪一类颜料,递归的时候就要把这类颜料作为下一步的\(x\)传进去,表示你下一层自己选择的时候,如果要选我这一层选择的这类颜料,你可用的选择数必须减1,否则将会和我冲突。而上一层递归给这一层传进了\(x\),说明上一层递归所挑的颜料在上一层为第\(x\)类,那么在这一层则是第\(x-1\)类(没用之前即减1)。如果你枚举当前层选择了第\(x-1\)类颜料,可用方案数必须减1。

  

​   需要梳理一下思路和控制关系,实现起来并不难。

  

  

  

#include <cstdio>
#include <cstring>
using namespace std;
const int N=16,MOD=1e9+7;
int n,a[6],c[6];
int f[N][N][N][N][N][6];
int dfs(int a1,int a2,int a3,int a4,int a5,int x){
int &F=f[a1][a2][a3][a4][a5][x];
if(F!=-1) return F;
F=0;
if(a1)
(F+=1LL*dfs(a1-1,a2,a3,a4,a5,1)*(a1-(x-1==1))%MOD)%=MOD;
if(a2)
(F+=1LL*dfs(a1+1,a2-1,a3,a4,a5,2)*(a2-(x-1==2))%MOD)%=MOD;
if(a3)
(F+=1LL*dfs(a1,a2+1,a3-1,a4,a5,3)*(a3-(x-1==3))%MOD)%=MOD;
if(a4)
(F+=1LL*dfs(a1,a2,a3+1,a4-1,a5,4)*(a4-(x-1==4))%MOD)%=MOD;
if(a5)
(F+=1LL*dfs(a1,a2,a3,a4+1,a5-1,5)*a5%MOD)%=MOD;
return F;
}
int main(){
freopen("input.in","r",stdin);
scanf("%d",&n);
for(int i=1;i<=n;i++){
int x;
scanf("%d",&x);
c[x]++;
}
memset(f,-1,sizeof f);
for(int i=0;i<=5;i++)
f[0][0][0][0][0][i]=1;
printf("%d\n",dfs(c[1],c[2],c[3],c[4],c[5],0));
return 0;
}

【BZOJ1079】【SCOI2008】着色方案的更多相关文章

  1. BZOJ1079 [SCOI2008]着色方案 动态规划

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1079 题目概括 有n个木块排成一行,从左到右依次编号为1~n.你有k种颜色的油漆,其中第i种颜色的 ...

  2. [luogu2476][bzoj1079][SCOI2008]着色方案【动态规划】

    题目描述 有n个木块排成一行,从左到右依次编号为1~n.你有k种颜色的油漆,其中第i种颜色的油漆足够涂ci个木块.所有油漆刚好足够涂满所有木块,即c1+c2+-+ck=n.相邻两个木块涂相同色显得很难 ...

  3. BZOJ1079:[SCOI2008]着色方案(DP)

    Description 有n个木块排成一行,从左到右依次编号为1~n.你有k种颜色的油漆,其中第i种颜色的油漆足够涂ci个木块. 所有油漆刚好足够涂满所有木块,即c1+c2+...+ck=n.相邻两个 ...

  4. BZOJ1079 [SCOI2008]着色方案 【dp记忆化搜索】

    题目 有n个木块排成一行,从左到右依次编号为1~n.你有k种颜色的油漆,其中第i种颜色的油漆足够涂ci个木块. 所有油漆刚好足够涂满所有木块,即c1+c2+-+ck=n.相邻两个木块涂相同色显得很难看 ...

  5. BZOJ1079: [SCOI2008]着色方案 (记忆化搜索)

    题意:有n个木块排成一行,从左到右依次编号为1~n.你有k种颜色的油漆,其中第i种颜色的油漆足够涂ci个木块. 所有油漆刚好足够涂满所有木块,即c1+c2+...+ck=n.相邻两个木块涂相同色显得很 ...

  6. 2018.10.20 bzoj1079: [SCOI2008]着色方案(多维dp)

    传送门 dp妙题. f[a][b][c][d][e][last]f[a][b][c][d][e][last]f[a][b][c][d][e][last]表示还剩下aaa个可以用一次的,还剩下bbb个可 ...

  7. BZOJ1079 [SCOI2008]着色方案[组合计数DP]

    $有a_{1}个1,a_{2}个2,...,a_{n}个n(n<=15,a_{n}<=5),求排成一列相邻位不相同的方案数.$ 关于这题的教训记录: 学会对于复杂的影响分开计,善于发现整体 ...

  8. bzoj1079: [SCOI2008]着色方案

    dp.以上次染色时用的颜色的数量和每种数量所含有的颜色作状态. #include<cstdio> #include<algorithm> #include<cstring ...

  9. 【记忆化搜索】bzoj1079 [SCOI2008]着色方案

    #include<cstring> #include<cstdio> using namespace std; #define MOD 1000000007 typedef l ...

  10. bzoj1079: [SCOI2008]着色方案

    ci<=5直接想到的就是5维dp了...dp方程YY起来很好玩...写成记忆化搜索比较容易 #include<cstdio> #include<cstring> #inc ...

随机推荐

  1. docker 部署 zookeeper+kafka 集群

    主机三台172.16.100.61172.16.100.62172.16.100.63Docker 版本 当前最新版 # 部署zk有2种方法 ## 注意 \后不要跟空格 一 . 端口映射 172.16 ...

  2. 如何寻找无序数组中的第K大元素?

    如何寻找无序数组中的第K大元素? 有这样一个算法题:有一个无序数组,要求找出数组中的第K大元素.比如给定的无序数组如下所示: 如果k=6,也就是要寻找第6大的元素,很显然,数组中第一大元素是24,第二 ...

  3. 小刘的深度学习---CNN

    前言: 前段时间我在树莓派上通过KNN,SVM等机器学习的算法实现了门派识别的项目,所用到的数据集是经典的MNIST.可能是因为手写数字与印刷体存在一些区别,识别率并是很不高.基于这样的情况,我打算在 ...

  4. 插件使用-HighChart

    一.介绍 让数据可视化更简单,兼容 IE6+.完美支持移动端.图表类型丰富.方便快捷的 HTML5 交互性图表库. 官网(英):https://www.highcharts.com/download ...

  5. 机器装多个版本php,并安装redis插件报错【已解决】

    机器原版本php5.5.3 适应新的框架安装了7.1.12 期间遇到的小问题就是安装 redis插件的时候,总报错,报错如下: Starting php-fpm [02-Jan-2019 10:15: ...

  6. TeamWork#2,Week 2,We are sixsix!

    We are sixsix! (从左至右依次是:郝倩.张志浩.高雅智[高哥].牛强.张明培育.彭林江.王卓) 郝倩,来自120617班,我们组7个成员中唯一一个6行政班以外的成员.为了达成组队条件,彭 ...

  7. POJ 2096 Collecting Bugs 期望dp

    题目链接: http://poj.org/problem?id=2096 Collecting Bugs Time Limit: 10000MSMemory Limit: 64000K 问题描述 Iv ...

  8. Internet History, Technology and Security (Week8)

    Week 8 This week we start two weeks of Internet Security. It is a little technical but don't worry - ...

  9. UDP与TCP笔记

    1.UDP UDP协议在工作时是建立在IP协议之上的,UDP从进程的缓冲区接收进程每一次产生的输出,对每次输出都生成一个UDP数据报,然后把生成的UDP数据报直接封装在IP数据报中进行传输,因此在传输 ...

  10. 07_Java基础语法_第7天(练习)_讲义

    今日内容介绍 1.循环练习 2.数组方法练习 01奇数求和练习 * A: 奇数求和练习 * a: 题目分析 * 为了记录累加和的值,我们需要定义一个存储累加和的变量 * 我们要获取到1-100范围内的 ...