http://www.lydsy.com/JudgeOnline/problem.php?id=4013 (题目链接)

题意

  给出$n$个数的$m$个大小关系,问它们之间可以形成的单调不降的序列有多少种。

Solution

  首先,因为等于号相连的两个数位置互换不会产生新的方案,我们先用并查集把用等号相连的点全部缩成一个。如果此时的图中出现了环,那么答案为$0$。考虑答案不为$0$的情况怎么处理。此时的图已经成为了一个DAG,我们需要在上面统计方案。容易发现,对于一个点,有分有合,合的情况很好处理,分的情况就很尴尬了,什么?你说每一个点只有一条入边?(哔了狗了)。因为并查集缩点后整个图已经变成了一棵树,我们考虑如何进行树形dp。

  $f[x][i]$表示在$x$的子树中,组成的序列用$<$相连的等价类个数为$i$个的序列方案,其中等价类就表示由等号相连的一坨数。不妨设$y$是$x$的某个儿子,那么转移:

\begin{aligned}  g[i+l]=f[x][i]*f[y][j]*\binom{i-1+l}{j-1}*\binom{j-1}{k-l}   \end{aligned}

  其中$i\in[1,size[x]]$,$j\in[1,size[y]]$,$l\in[max(0,k-j+1),k]$。$g$是一个临时的存储答案的数组。$l$是我们枚举的$y$所贡献的等价类,那么剩下的$k-l$就是$y$中与原本$x$中相等的数的个数。$x$永远排在序列首位而且不会与任意一个数相等。$\binom{i-1+l}{j-1}$表示两个无相对关系的已经排序好的序列合并为一个序列的方案。$\binom{j-1}{k-l}$表示在$x$的$j-1$个数中选出与$y$的$k-l$个数相等的数的方案。

细节

  可能是个森林,所以用一个超级源点连向若干根节点。

代码

// bzoj4013
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<queue>
#define LL long long
#define inf (1ll<<30)
#define MOD 1000000007
#define Pi acos(-1.0)
#define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout);
using namespace std; const int maxn=200;
LL C[maxn][maxn],f[maxn][maxn],g[maxn];
int head[maxn],size[maxn],vis[maxn],fa[maxn],r[maxn],n,m,c,cnt,sum;
struct data {int u,v;}a[maxn];
struct edge {int to,next;}e[maxn]; int find(int x) {
return x==fa[x] ? x : fa[x]=find(fa[x]);
}
void link(int u,int v) {
e[++cnt]=(edge){v,head[u]};head[u]=cnt;
}
bool bfs() {
queue<int> q;q.push(0);
int tot=0;
while (!q.empty()) {
int x=q.front();q.pop();tot++;
for (int i=head[x];i;i=e[i].next)
if (!--r[e[i].to]) q.push(e[i].to);
}
return tot==sum+1;
}
void dfs(int x) {
vis[x]=f[x][1]=size[x]=1;
for (int i=head[x];i;i=e[i].next) if (!vis[e[i].to]) {
int y=e[i].to;dfs(y);
for (int j=1;j<=size[x];j++) {
if (!f[x][j]) continue;
for (int k=1;k<=size[y];k++) {
if (!f[y][k]) continue;
for (int l=max(0,k-j+1);l<=k;l++)
(g[j+l]+=f[x][j]*f[y][k]%MOD*C[j+l-1][j-1]%MOD*C[j-1][k-l]%MOD)%=MOD;
}
}
size[x]+=size[e[i].to];
for (int i=1;i<=size[x];i++) f[x][i]=g[i],g[i]=0;
}
}
int main() {
scanf("%d%d",&n,&m);
for (int i=1;i<=n;i++) fa[i]=i;
for (int i=0;i<=n;i++) C[i][0]=1;
for (int i=1;i<=n;i++)
for (int j=1;j<=i;j++) C[i][j]=(C[i-1][j-1]+C[i-1][j])%MOD;
for (int u,v,i=1;i<=m;i++) {
char ch[2];scanf("%d%s%d",&u,ch,&v);
if (ch[0]=='=') if (find(u)!=find(v)) fa[find(u)]=find(v);
if (ch[0]=='<') a[++c]=(data){u,v};
}
for (int i=1;i<=c;i++) {
int u=find(a[i].u),v=find(a[i].v);
link(u,v);r[v]++;
}
for (int i=1;i<=n;i++) if (fa[i]==i) {
sum++;
if (!r[i]) link(0,i),r[i]++;
}
if (!bfs()) {puts("0");return 0;}
dfs(0);
int ans=0;
for (int i=1;i<=n+1;i++) (ans+=f[0][i])%=MOD;
printf("%d",ans);
return 0;
}

【bzoj4013】 HNOI2015—实验比较的更多相关文章

  1. [BZOJ4013][HNOI2015]实验比较(树形DP)

    4013: [HNOI2015]实验比较 Time Limit: 5 Sec  Memory Limit: 512 MBSubmit: 756  Solved: 394[Submit][Status] ...

  2. BZOJ4013 : [HNOI2015]实验比较

    首先用并查集将等号缩点,然后拓扑排序判断有没有环,有环则无解,否则通过增加超级源点$0$,可以得到一棵树. 设$f[x][y]$表示$x$子树里有$y$种不同的数字的方案数,由底向上DP. 对于当前点 ...

  3. 【BZOJ4013】[HNOI2015]实验比较(动态规划)

    [BZOJ4013][HNOI2015]实验比较(动态规划) 题面 BZOJ 洛谷 题解 看题目意思就是给你一棵树,连边表示强制顺序关系.然后你要给点染色,在满足顺序关系的情况下,将序列染成若干个颜色 ...

  4. 4013: [HNOI2015]实验比较

    4013: [HNOI2015]实验比较 链接 分析: 首先把等号用并查集合并起来. 由于只存在最多一个质量不比i差的数,发现这是森林.若x<y,连边x->y.于是建虚拟根节点0. 然后树 ...

  5. bzoj 4013: [HNOI2015]实验比较

    Description 小D 被邀请到实验室,做一个跟图片质量评价相关的主观实验.实验用到的图片集一共有 N 张图片,编号为 1 到 N.实验分若干轮进行,在每轮实验中,小 D会被要求观看某两张随机选 ...

  6. [HNOI2015]实验比较

    Description 小D 被邀请到实验室,做一个跟图片质量评价相关的主观实验.实验用到的图片集一共有 N 张图片,编号为 1 到 N.实验分若干轮进行,在每轮实验中,小 D会被要求观看某两张随机选 ...

  7. P3240 [HNOI2015]实验比较 树形DP

    \(\color{#0066ff}{ 题目描述 }\) 小D 被邀请到实验室,做一个跟图片质量评价相关的主观实验.实验用到的图片集一共有 \(N\) 张图片,编号为 \(1\) 到\(N\).实验分若 ...

  8. luogu P3240 [HNOI2015]实验比较

    传送门 首先根据题目条件,题目中如果是=的点可以缩起来,然后\(a<b\)连边\(a\rightarrow b\),而且所有点入度为最多1,那么判掉有环的不合法情况,题目中的依赖关系就是一颗外向 ...

  9. 【BZOJ】4013: [HNOI2015]实验比较

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=4013 中第i 条涉及的图片对为(KXi, Xi),判断要么是KXi < Xi ,要么 ...

随机推荐

  1. Python浮点算术:争议和限制

    浮点数在计算机硬件中表示为以 2 为基数(二进制)的小数.举例而言,十进制的小数 0.125 等于 1/10 + 2/100 + 5/1000 ,同理,二进制的小数 0.001 等于0/2 + 0/4 ...

  2. github在版本库中删除某个文件的所有历史记录

    github的目的就是版本控制,记录每一个版本的变动.然而有的时候我们往往希望从版本库中彻底删除某个文件,不再显示在历史记录中.例如不小心上传了一堆错误的文件,或者不小心上传了帐号.密码,那么这个时候 ...

  3. 华为笔试——C++最高分问题

    题目介绍:现在输入一组数据,写入学生的考试分数.已知学生数为N,学生编号为1到N,且0<N<=30000,每个学生都有一个分数:操作数为M且0<M<5000.输入第一行为N M ...

  4. url的param与dict转换

    urllib.parse.urlencode urlencode from urllib import parse from urllib.request import urlopen from ur ...

  5. Scurm Meeting 11.2

    成员 今日任务 明日计划 用时 徐越 写功能规格说明书,代码移植 创建数据库,代码移植 3h 赵庶宏 编写功能规格说明书,学习访问数据库代码,代码迁移 代码迁移 5h 武鑫 设计界面:独立完成一些简单 ...

  6. android学习-1

    所有的android应用都是由屏幕构成的一个集合,每个屏幕则由一个活动和一个布局组成. 活动--用户可以完成的一个确定的事. 布局--对屏幕外观的描述.(布局写为一个XML文件,回告诉android如 ...

  7. js弹出框 -搜索

    警告框alert() alert是警告框,只有一个按钮“确定”无返回值,警告框经常用于确保用户可以得到某些信息.当警告框出现后,用户需要点击确定按钮才能继续进行操作.语法:alert("文本 ...

  8. 冲刺One之站立会议1

    接到任务之后的第一天,大家都分头查找了一些相关资料,目的是最终确定用什么语言编写程序.李琦负责对Java实现聊天室进行调研.郭婷和朱慧敏负责对C#进行调研.李敏和刘子晗负责对QT的实现进行调研.并讨论 ...

  9. beat冲刺(3/7)

    目录 摘要 团队部分 个人部分 摘要 队名:小白吃 组长博客:hjj 作业博客:beta冲刺(3/7) 团队部分 后敬甲(组长) 过去两天完成了哪些任务 整理博客 ppt模板 接下来的计划 做好机动. ...

  10. 如何在IIS中设置HTTPS服务

    文章:https://support.microsoft.com/en-us/help/324069/how-to-set-up-an-https-service-in-iis 在这个任务中 摘要 为 ...