本文将涉及到用 EM 算法来求解 GMM 模型,文中会涉及几个统计学的概念,这里先罗列出来:

  • 方差:用来描述数据的离散或波动程度.

\[var(X) =  \frac{\sum_{i=1}^N( X_i-\bar{X})^2}{N-1}\]

  • 协方差:协方差表示了变量线性相关的方向,取值范围是 $[-\infty, +\infty]$,一般来说协方差为正值,说明一个变量变大另一个变量也变大;取负值说明一个变量变大另一个变量变小,取0说明两个变量没有相关关系.

\[cov(X,Y) =  \frac{\sum_{i=1}^N( X_i-\bar{X})(Y_i-\bar{Y}) }{N-1}\]

  • 相关系数:协方差可反映两个变量之间的相互关系及相关方向,但无法表达其相关的程度,皮尔逊相关系数不仅表示线性相关的方向,还表示线性相关的程度,取值$[-1,1]$,也就是说,相关系数为正值,说明一个变量变大另一个变量也变大;取负值说明一个变量变大另一个变量变小,取0说明两个变量没有相关关系,同时,相关系数的绝对值越接近1,线性关系越显著。

\[\rho_{XY} = \frac{cov(X,Y)}{\sqrt{DX}\sqrt{DX}}\]

  • 协方差矩阵: 当 $X \in \mathbb{R}^n$ 为高维数据时,协方差矩阵可以很好的反映数据的性质,在协方差矩阵中,对角线元素反映了数据在各个维度上的离散程度,协方差矩阵为对角阵,非对角线元素反映了数据各个维度的相关性,其形式如下:

\[\mathbf{\Sigma} = \begin{bmatrix}
cov(x_1,x_1) &  cov(x_1,x_2)&\cdots  &cov(x_1,x_n) \\ cov(x_2,x_1) &  cov(x_1,x_1)&\cdots  &cov(x_1,x_1) \\
\vdots & \vdots   & &  \vdots & \\ cov(x_n,x_1) &  cov(x_n,x_1)&\cdots  &cov(x_n,x_n) 
\end{bmatrix}\]

上图展示了二维情况下,使用不同的协方差矩阵时高斯分布的变化,左边代表不相关,中间为正相关,右边为负相关。

高斯分布

假设数据 $\mathbf{x} \in \mathbb{R}^n$ 服从参数为 $\mathbf{\mu},\mathbf{\Sigma}$ 的高斯分布:

\[ \mathcal{N}(\mathbf{x};\mu,\mathbf{\Sigma}) = \frac{1}{(2\pi)^{n/2}|\mathbf{\Sigma}|^{1/2}}\exp\left \{ -\frac{1}{2} (\mathbf{x}-\mu)^T\mathbf{\Sigma}^{-1}(\mathbf{x}-\mu) \right \}\]

这里 $\mu$ 为均值, $\Sigma$ 为协方差矩阵,对于单个高斯分布,当给定数据集之后,直接进行 MLE 即可估计高斯分布的参数;但是有些数据集是多个高斯分布叠加在一起形成的,也就数据集是由多个高斯分布产生的,如下图所示三个高斯分布叠加在一起:

多个高斯分布叠加在一起便是混合高斯模型 GMM,GMM 的定义如下:

\[p(\mathbf{\mbox{x}}) = \sum_{k=1}^K \pi_k \mathcal{N}(\mathbf{\mbox{x}} | \mathbf{\mu}_k, \mathbf{\Sigma}_k)\]

这里 $K$ 表示高斯分布的个数, $\pi_k$ 代表 mixing coefficient ,且满足 $0 \le \pi_k \le 1,\sum_k\pi_k = 1$,其实这里 $p(\mathbf{x})$ 表示为 $K$ 个高斯分布的加权, $\pi_k$ 就是权重系数,如果把 GMM 用在聚类中,则样本 $\mathbf{x}$ 的类别即为 $\arg\max_k\pi_k$.

在 GMM 中,需要估计的参数为 $\pi_k, \mu_k, \mathbf{\Sigma}_k$,模型里每个观测数据 $\mathbf{x}$ 都对应着一个隐变量 $\mathbf{z} \in \mathbb{R}^K$,代表的即为类别变量, 且 $\mathbf{z}_k \in \left \{  0,1\right \}$ ,一个样本可以属于多个类别,叠加起来概率为 1 ,这里显而易见有:

\[p(\mathbf{z}_k = 1) = \pi_k \]

则第 $k$ 个高斯分布可以表示为:

\[p(\mathbf{\mbox{x}}|z_k = 1) = \mathcal{N}(\mathbf{\mbox{x}} | \mathbf{\mu}_k, \mathbf{\Sigma}_k)\]

如果已知 $\mathbf{x}$ 所属的分布 $k$ ,则可把上式写成向量形式:

\[p(\mathbf{x}|\mathbf{z}) = \mathcal{N}(\mathbf{\mbox{x}} | \mathbf{\mu}_k, \mathbf{\Sigma}_k)\]

因此完全数据的密度函数为:

\[p(\mathbf{\mbox{x}}) = \sum_{\mathbf{\mbox{z}}} p(\mathbf{\mbox{z}}) p(\mathbf{\mbox{x}} | \mathbf{\mbox{z}}) = \sum_{k=1}^K \pi_k \mathcal{N}(\mathbf{\mbox{x}} | \mathbf{\mu}_k, \mathbf{\Sigma}_k)\]

单个样本推倒完成,接下来给定观测数据集 $X$,对应的完全数据集为 $\left\{ X,Z\right\}$ ,此时 $Z$ 是不可见的,形式如下:

\[X = \begin{bmatrix} - \mathbf{x}_1^T-\\ -\mathbf{x}_2^T -\\  \vdots \\ -\mathbf{x}_N^T -\\\end{bmatrix} \ \ Z = \begin{bmatrix} - \mathbf{z}_1^T-\\ -\mathbf{z}_2^T -\\ \vdots \\ -\mathbf{z}_N^T -\\\end{bmatrix}\]

对于该 GMM 的参数就采用 EM 算法来求解了,完全数据的联合分布为:

\[p(\mathbf{X,Z} | \mathbf{\mu, \Sigma, \pi}) = \prod_{n=1}^N \left \{ \sum_{k=1}^K \pi_k \mathcal{N}(\mathbf{\mbox{x}}_n \vert \mathbf{\mu}_k, \mathbf{\Sigma}_k) \right \}\]

写成对数似然函数的形式:

\[\ln p(\mathbf{\mbox{X,Z}} | \mathbf{\mu, \Sigma, \pi}) = \sum_{n=1}^N \ln \left \{ \sum_{k=1}^K \pi_k  \mathcal{N}(\mathbf{\mbox{x}}_n | \mathbf{\mu}_k, \mathbf{\Sigma}_k)  \right \}\]

下面便是EM 算法求解 GMM 的过程:

E步: 使用参数 $\theta^{old}=(\pi^{old},\mu^{old},\mathbf{\Sigma}^{old})$ ,计算每个样本 $x_n$ 对应隐变量 $z_n$ 的后验分布:

\begin{aligned}
\gamma(z_{nk})=p(z_n = k|\mathbf{x}_n;\mathbf{\mu}^{old},\mathbf{\Sigma}^{old})
&=\frac{p(z_{nk} = 1)p(\mathbf{x_{nk}}|z_{nk} = 1)}{\sum_{j=1}^Kp(z_{nj} = 1)p(\mathbf{x_n}|z_{nj} = 1)}\\
&= \frac{ \pi_k^{old} \mathcal{N}(\mathbf{\mbox{x}}_n | \mathbf{\mu}_k^{old}, \mathbf{\Sigma}_k^{old})} {\Sigma_{j=1}^K\pi_j^{old} \mathcal{N}(\mathbf{\mbox{x}}_n | \mathbf{\mu}_j^{old}, \mathbf{\Sigma}^{old}_j)}
\end{aligned}

M步:便是极大化 Q 函数的计算,这里 Q 函数有非常漂亮的形式:

\begin{aligned}
\mathcal{Q} (\mathbf{\theta}, \mathbf{\theta}^{\mbox{old}}) 
&=  \sum_{Z} p(Z | X,\theta^{old}) \ln p(X, Z | \theta)\\
&=  \sum_{Z} p(Z | X,\theta^{old}) \ln p(X| Z ,\theta)P(Z|\theta)\\
&=\sum_{n= 1}^N \sum_{k=1}^K\gamma(z_{nk})\left \{  \ln \pi_k +\ln\mathcal{N}(\mathbf{x}_n|\mathbf{\mu}_k ,\mathbf{\Sigma}_k) \right \}\\
\end{aligned}

得到下一步迭代的参数:

\[\theta^{new}=\arg\max_{\theta}\mathcal{Q} (\mathbf{\theta}, \mathbf{\theta}^{\mbox{old}})  \]

对 Q 函数求导,另倒数得 0 ,即可求得下一次迭代的参数值,这里省去计算过程,只给出结果:

\begin{aligned}
\mathbf{\mu}_k^{new} &= \frac{1}{N_k}\sum_{n=1}^N\gamma(z_{nk})\mathbf{x}_n\\
\mathbf{\Sigma}_k^{new} &= \frac{1}{N_k}\sum_{n=1}^N\gamma(z_{nk})(\mathbf{x}_n-\mathbf{\mu}_k^{new})(\mathbf{x}_n-\mathbf{\mu}_k^{new})^T \\
\mathbf{\pi}_k^{new} &=  \frac{N_k}{N}
\end{aligned}

其中:

\[N_k = \sum_{n=1}^N \gamma(z_{nk})\]

这便是完整的 GMM 推倒过程,理解的不是很好,有机会继续深入。

参考:

Pattern Reconginition and Machine Learning

http://www.zhihu.com/question/20852004

http://www.cnblogs.com/nsnow/p/4758202.html

http://alexkong.net/2014/07/GMM-and-EM/

http://www.cnblogs.com/jerrylead/archive/2011/04/06/2006936.html

http://www.cnblogs.com/ooon/p/5787995.html

高斯混合模型 GMM的更多相关文章

  1. 贝叶斯来理解高斯混合模型GMM

    最近学习基础算法<统计学习方法>,看到利用EM算法估计高斯混合模型(GMM)的时候,发现利用贝叶斯的来理解高斯混合模型的应用其实非常合适. 首先,假设对于贝叶斯比较熟悉,对高斯分布也熟悉. ...

  2. 6. EM算法-高斯混合模型GMM+Lasso详细代码实现

    1. 前言 我们之前有介绍过4. EM算法-高斯混合模型GMM详细代码实现,在那片博文里面把GMM说涉及到的过程,可能会遇到的问题,基本讲了.今天我们升级下,主要一起解析下EM算法中GMM(搞事混合模 ...

  3. 5. EM算法-高斯混合模型GMM+Lasso

    1. EM算法-数学基础 2. EM算法-原理详解 3. EM算法-高斯混合模型GMM 4. EM算法-GMM代码实现 5. EM算法-高斯混合模型+Lasso 1. 前言 前面几篇博文对EM算法和G ...

  4. 4. EM算法-高斯混合模型GMM详细代码实现

    1. EM算法-数学基础 2. EM算法-原理详解 3. EM算法-高斯混合模型GMM 4. EM算法-高斯混合模型GMM详细代码实现 5. EM算法-高斯混合模型GMM+Lasso 1. 前言 EM ...

  5. 3. EM算法-高斯混合模型GMM

    1. EM算法-数学基础 2. EM算法-原理详解 3. EM算法-高斯混合模型GMM 4. EM算法-高斯混合模型GMM详细代码实现 5. EM算法-高斯混合模型GMM+Lasso 1. 前言 GM ...

  6. EM算法和高斯混合模型GMM介绍

    EM算法 EM算法主要用于求概率密度函数参数的最大似然估计,将问题$\arg \max _{\theta_{1}} \sum_{i=1}^{n} \ln p\left(x_{i} | \theta_{ ...

  7. 高斯混合模型GMM与EM算法的Python实现

    GMM与EM算法的Python实现 高斯混合模型(GMM)是一种常用的聚类模型,通常我们利用最大期望算法(EM)对高斯混合模型中的参数进行估计. 1. 高斯混合模型(Gaussian Mixture ...

  8. Spark2.0机器学习系列之10: 聚类(高斯混合模型 GMM)

    在Spark2.0版本中(不是基于RDD API的MLlib),共有四种聚类方法:      (1)K-means      (2)Latent Dirichlet allocation (LDA)  ...

  9. 高斯混合模型(GMM) - 混合高斯回归(GMR)

    http://www.zhihuishi.com/source/2073.html 高斯模型就是用高斯概率密度函数(正态分布曲线)精确地量化事物,将一个事物分解为若干的基于高斯概率密度函数(正态分布曲 ...

随机推荐

  1. Windows如何安装pip

    下载这个文件:  https://bootstrap.pypa.io/get-pip.py 然后到下载目录执行Python命令:   (管理员权限执行) python get-pip.py

  2. Intellij IDEA 通过数据库表逆向生成带注释的实体类文件超级详细步骤,附详细解决方案

    参考:https://blog.csdn.net/qq_34371461/article/details/80571281  https://blog.csdn.net/mqchenrong/arti ...

  3. IIS6 2.0 4.0 冲突解决 'c:\Windows\Microsoft.NET\Framework64\v4.0.30319\Temporary ASP.NET Files\root\xxx' -- 'Access is denied. '

    今天在阿里云虚拟机上部署新站点后出现下面的错误: Compiler Error Message: CS0016: Could not write to output file 'c:\Windows\ ...

  4. 【SQL 代码】SQL复制数据表及表结构

    select * into 目标表名 from 源表名 from 源表名 以上两句都是将'源表'的数据插入到'目标表',但两句又有区别的: 第一句(select into from)要求目标表不存在, ...

  5. 微软BI SSIS 2012 辅助阅读博客

    大家可以根据对应的视频课程名称查找相关的辅助阅读博客,有少量辅助阅读博客和视频课程讲解内容相同,大部分都是拓展总结部分.希望大家在学完每一个视频课程之后看看相关博客内容,这样可以在知识面和深度上继续得 ...

  6. epoll源码分析

    epoll源码分析 最近在使用libev过程中遇到一个场景:一个fd从一个ev_loop迁移到另一个ev_loop,会出现这个fd同时存在两个epoll的瞬间.不禁要问了,一个fd同时被两个epoll ...

  7. 开发指南专题五:JEECG微云高速开发平台代码生成器

    开发指南专题五:JEECG微云高速开发平台代码生成器 1.1. Maven开发环境搭建 在搭建jeecg的maven开发环境之前,须要先配置好本机的maven环境,并在eclipse中安装好m2ecl ...

  8. VirtualBox安装64位系统

    2010-04-29    到引导区报错: This kernel requires an X86-64  CPU,but only detected an i686 CPU. 以我小学水平的英语理解 ...

  9. 【C#】详解C#序列化

    目录结构: contents structure [+] 简介 控制序列化和反序列化 特性(OnSerializing.OnSerialized.OnDeserializing.OnDeseriali ...

  10. 解决ScrollView嵌套RecyclerView出现item显示不全的问题

      问题:ScrollView嵌套RecyclerView时,RecyclerView的item显示不全 出现问题不要慌,耐心解决才是王道,哈哈.首先说下出现这个问题的情景吧,首先声明这个问题在23版 ...