BZOJ 4591 【SHOI2015】 超能粒子炮·改
题目链接:超能粒子炮·改
这道题的大体思路就是用\(lucas\)定理,然后合并同类项,就可以得到一个可以递归算的式子了。
我们用\(S(n,k)\)表示答案,\(p\)表示模数(\(2333\)是一个质数),那么有:
\begin{aligned}
S(n,k)&=\sum_{i=0}^k\binom{n}{i} \\
&=\sum_{i=0}^k\binom{n\bmod p}{i \bmod p}\binom{\lfloor \frac{n}{p} \rfloor}{\lfloor \frac{i}{p} \rfloor}
\end{aligned}
为了接下来方便表示,不妨设\(k=k_1p+k_2(k_2<p)\)
我们按\(\lfloor \frac{i}{p} \rfloor\)的值进行分类计算。由于前面有\(k_1\)块是满的,最后一块不满,所以分两部分计算。
\begin{aligned}
S(n,k) &=\sum_{i=0}^k\binom{n\bmod p}{i \bmod p}\binom{\lfloor \frac{n}{p} \rfloor}{\lfloor \frac{i}{p} \rfloor} \\
&=\sum_{i=0}^{k_1-1}\binom{\lfloor \frac{n}{p} \rfloor}{i}\sum_{j=0}^{p-1}\binom{n \bmod p}{j}+\sum_{i=k_1p}^k\binom{n \bmod p}{i \bmod p}\binom{\lfloor \frac{n}{p} \rfloor}{\lfloor \frac{i}{p} \rfloor} \\
&=S(\lfloor \frac{n}{p} \rfloor,k_1-1)S(n \bmod p,p-1)+\binom{\lfloor \frac{n}{p} \rfloor}{k_1}S(n \bmod p,k \bmod p)
\end{aligned}
所以预处理\(p\)以内的组合数以及组合数的前缀和就可以递归算了。组合数用\(lucas\)算一算就好。
BZOJ 4591 【SHOI2015】 超能粒子炮·改的更多相关文章
- Bzoj 4591: [Shoi2015]超能粒子炮·改 数论,Lucas定理,排列组合
4591: [Shoi2015]超能粒子炮·改 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 178 Solved: 70[Submit][Stat ...
- bzoj 4591: [Shoi2015]超能粒子炮·改 [lucas定理]
4591: [Shoi2015]超能粒子炮·改 题意:多组询问,求 \[ S(n, k) = \sum_{i=0}^n \binom{n}{i} \mod 2333,\ k \le n \le 10^ ...
- bzoj 4591 [Shoi2015]超能粒子炮·改——组合数前缀和
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4591 先说说自己的想法: 从组合意义的角度考虑,从n个里选<=k个,就添加k个空位置, ...
- 【BZOJ4591】[SHOI2015]超能粒子炮·改 (卢卡斯定理)
[BZOJ4591][SHOI2015]超能粒子炮·改 (卢卡斯定理) 题面 BZOJ 洛谷 题解 感天动地!终于不是拓展卢卡斯了!我看到了一个模数,它是质数!!! 看着这个东西就感觉可以递归处理. ...
- 洛谷 P4345 [SHOI2015]超能粒子炮·改 解题报告
P4345 [SHOI2015]超能粒子炮·改 题意 求\(\sum_{i=0}^k\binom{n}{i}\),\(T\)组数据 范围 \(T\le 10^5,n,j\le 10^{18}\) 设\ ...
- bzoj4591 / P4345 [SHOI2015]超能粒子炮·改
P4345 [SHOI2015]超能粒子炮·改 题意:求$\sum_{i=1}^{k}C(n,i)\%(P=2333)$ 肯定要先拆开,不然怎么做呢(大雾) 把$C(n,i)$用$lucas$分解一下 ...
- BZOJ_4591_[Shoi2015]超能粒子炮·改_Lucas定理
BZOJ_4591_[Shoi2015]超能粒子炮·改_Lucas定理 Description 曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以 ...
- Lucas(卢卡斯)定理模板&&例题解析([SHOI2015]超能粒子炮·改)
Lucas定理 先上结论: 当p为素数: \(\binom{ N }{M} \equiv \binom{ N/p }{M/p}*\binom{ N mod p }{M mod p} (mod p)\) ...
- 【bzoj4591】[Shoi2015]超能粒子炮·改 Lucas定理
题目描述 曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以发射威力更加强大的粒子流的神秘装置.超能粒子炮·改相比超能粒子炮,在威力上有了本质的提 ...
- bzoj4591 [Shoi2015]超能粒子炮·改
Description 曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以发射威力更加 强大的粒子流的神秘装置.超能粒子炮·改相比超能粒子炮,在威 ...
随机推荐
- netperf 网络性能测试
Netperf是一种网络性能的测量工具,主要针对基于TCP或UDP的传输.Netperf根据应用的不同,可以进行不同模式的网络性能测试,即批量数据传输(bulk data transfer)模式和请求 ...
- python内置函数的简单使用和介绍
"""内置函数的简单使用和介绍参考链接:https://docs.python.org/3/library/functions.html ""&quo ...
- 深入理解HashMap+ConcurrentHashMap的扩容策略
前言 理解HashMap和ConcurrentHashMap的重点在于: (1)理解HashMap的数据结构的设计和实现思路 (2)在(1)的基础上,理解ConcurrentHashMap的并发安全的 ...
- MyEclipse如何修改XML文件默认打开的编辑器
1.MyEclipse如何修改XML文件默认打开的编辑器 Windows--->Preferences--->General--->Editors--->File Associ ...
- linux 搭建svn(待完成)
http://blog.csdn.net/lazy_cc/article/details/8726500搭建仓库 http://blog.csdn.net/xocoder/article/detail ...
- Golang实现冒泡排序法
关于冒泡排序的原理请看本博客这篇文章冒泡排序法原理讲解及PHP代码示例 //代码 package main import ( "fmt" ) func main() { //定义一 ...
- Builgen 插件——IntelliJ IDEA和Eclipse Java Bean Builder模式代码生成器-比lombok更符合需求
builder模式在越来越多的项目中使用,类似于alibaba fastjson JSONObject.fluentPut(),调用一个方法后返回这个对象本身,特别适合构建一些参数超级多的对象,代码优 ...
- k8s API sample
Declarative API k8s: cluster-api Introduction to Kubernetes Cluster-API Project Declarative Manageme ...
- Eclipse中手动清理项目缓存,
用过Eclipse或MyEclipse的小伙伴肯定遇到过这种情况: 代码出错后,在前台访问出问题.然后把代码改好,已经检查不到错误,可是项目在前台访问还是有问题. 这个时候,可能就是Eclipse/M ...
- 2018-2019-2 《网络对抗技术》Exp4 恶意代码分析20165211
目录 实践内容概述 实践目标 实践内容 实验问题回答 实践过程记录 系统运行监控 使用schtacks指令监控系统运行 使用sysmon工具监控系统运行 恶意软件分析 使用Virus Total分析恶 ...