CodeForces - 787C

Rick and Morty are playing their own version of Berzerk (which has nothing in common with the famous Berzerk game). This game needs a huge space, so they play it with a computer.

In this game there are n objects numbered from 1 to n arranged in a circle (in clockwise order). Object number 1 is a black hole and the others are planets. There's a monster in one of the planet. Rick and Morty don't know on which one yet, only that he's not initially in the black hole, but Unity will inform them before the game starts. But for now, they want to be prepared for every possible scenario.

Each one of them has a set of numbers between 1 and n - 1 (inclusive). Rick's set is s1 with k1 elements and Morty's is s2 with k2 elements. One of them goes first and the player changes alternatively. In each player's turn, he should choose an arbitrary number like x from his set and the monster will move to his x-th next object from its current position (clockwise). If after his move the monster gets to the black hole he wins.

Your task is that for each of monster's initial positions and who plays first determine if the starter wins, loses, or the game will stuck in an infinite loop. In case when player can lose or make game infinity, it more profitable to choose infinity game.

Input

The first line of input contains a single integer n (2 ≤ n ≤ 7000) — number of objects in game.

The second line contains integer k1 followed by k1 distinct integers s1, 1, s1, 2, ..., s1, k1 — Rick's set.

The third line contains integer k2 followed by k2 distinct integers s2, 1, s2, 2, ..., s2, k2 — Morty's set

1 ≤ ki ≤ n - 1 and 1 ≤ si, 1, si, 2, ..., si, ki ≤ n - 1 for 1 ≤ i ≤ 2.

Output

In the first line print n - 1 words separated by spaces where i-th word is "Win" (without quotations) if in the scenario that Rick plays first and monster is initially in object number i + 1 he wins, "Lose" if he loses and "Loop" if the game will never end.

Similarly, in the second line print n - 1 words separated by spaces where i-th word is "Win" (without quotations) if in the scenario that Morty plays first and monster is initially in object number i + 1 he wins, "Lose" if he loses and "Loop" if the game will never end.

Example

Input
52 3 23 1 2 3
Output
Lose Win Win LoopLoop Win Win Win
Input
84 6 2 3 42 3 6
Output
Win Win Win Win Win Win WinLose Win Lose Lose Win Lose Lose

题目大意是:有n个位置1,2,3……n,围成1个圈,某个物体最开始的位置不在1,两个人轮流操作,每个人操作时可以让这个物体顺时针运动一些位置,使物体最终到达1号位置的人胜。求:物体初始在每个位置(不包括1),两个人分别先手的胜负情况。

感谢HX提供思路。。。

每个人每个状态无非就是三种情况:必胜(Win),必败(Lose),无法到达(Loop)。这其实是博弈论。

由于必败状态必定由所有必胜状态可推得,必胜状态只要1个必败状态就可以推出,那我们可以通过BFS/DFS的方式实现。设状态(x,y)表示当前是y操作,物体位置在x。那么(1,0)和(1,1)必然是必败状态。

假设我们使用BFS,当前状态为(ux,uy),下一个状态为(vx,vy),那么事实上是由(vx,vy)推得(ux,uy)。但是我们知道的是最终状态,求的是初始状态,所以要反着来推。

如果(vx,vy)这个状态还没有确定,则:

如果(ux,uy)必败,(vx,vy)必胜;

如果(ux,uy)必胜,则要看看其他状态(同一层的)是否全部必胜,若是,则(vx,vy)必败。

代码如下:
 #include<cstdio>
 #include<cstring>
 #include<algorithm>
 #include<queue>
 using namespace std;
 ;
 struct node{
     int x,f;
 };
 ],a[][maxn],f[][maxn],cnt[][maxn];
 int read(){
     ,f=; char ch=getchar();
     '){if (ch=='-') f=-f; ch=getchar();}
     +ch-',ch=getchar();
     return x*f;
 }
 int main(){
     n=read();
     ; i<; i++){
         K[i]=read(); ; j<K[i]; j++) a[i][j]=read();
     }
     queue <node> Q; Q.push((node){,}); Q.push((node){,});
     memset(f,,][]=f[][]=;
     ; i<; i++)
         ; j<=n; j++) cnt[i][j]=K[i];
     for (; !Q.empty(); Q.pop()){
         node u=Q.front(),v; v.f=-u.f;
         ; i<K[v.f]; i++){
             v.x=u.x-a[v.f][i]; ) v.x+=n;
             if (f[v.f][v.x]) continue;
             ) f[v.f][v.x]=,Q.push((node){v.x,v.f});
             else{
                 cnt[v.f][v.x]--; ) f[v.f][v.x]=,Q.push((node){v.x,v.f});
             }
         }
     }
     ; i<; i++,putchar('\n'))
         ; j<=n; j++) printf(??"Win":"Lose");
     ;
 }

[vjudge contest15(xjoi)] C - Berzerk的更多相关文章

  1. [XJOI NOI2015模拟题13] C 白黑树 【线段树合并】

    题目链接:XJOI - NOI2015-13 - C 题目分析 使用神奇的线段树合并在 O(nlogn) 的时间复杂度内解决这道题目. 对树上的每个点都建立一棵线段树,key是时间(即第几次操作),动 ...

  2. [XJOI NOI2015模拟题13] B 最小公倍数 【找规律】

    题目链接:XJOI - NOI2015-13 - B 题目分析 通过神奇的观察+打表+猜测,有以下规律和性质: 1) 删除的 n 个数就是 1~n. 2) 当 c = 2 时,如果 n + 1 是偶数 ...

  3. [XJOI NOI2015模拟题13] A 神奇的矩阵 【分块】

    题目链接:XJOI NOI2015-13 A 题目分析 首先,题目定义的这种矩阵有一个神奇的性质,第 4 行与第 2 行相同,于是第 5 行也就与第 3 行相同,后面的也是一样. 因此矩阵可以看做只有 ...

  4. [XJOI NOI02015训练题7] B 线线线 【二分】

    题目链接:XJOI - NOI2015-07 - B 题目分析 题意:过一个点 P 的所有直线,与点集 Q 的最小距离是多少?一条直线与点集的距离定义为点集中每个点与直线距离的最大值. 题解:二分答案 ...

  5. [刷题]Codeforces 786A - Berzerk

    http://codeforces.com/problemset/problem/786/A Description Rick and Morty are playing their own vers ...

  6. Vjudge Code

    Stylus @-moz-document url-prefix("https://cn.vjudge.net/"), url-prefix("https://vjudg ...

  7. Codeforces Round #406 (Div. 1) A. Berzerk 记忆化搜索

    A. Berzerk 题目连接: http://codeforces.com/contest/786/problem/A Description Rick and Morty are playing ...

  8. 专题[vjudge] - 数论0.1

    专题[vjudge] - 数论0.1 web-address : https://cn.vjudge.net/contest/176171 A - Mathematically Hard 题意就是定义 ...

  9. 【XJOI】【NOI考前模拟赛7】

    DP+卡常数+高精度/  计算几何+二分+判区间交/  凸包 首先感谢徐老师的慷慨,让蒟蒻有幸膜拜了学军的神题.祝NOI2015圆满成功 同时膜拜碾压了蒟蒻的众神QAQ 填填填 我的DP比较逗比……( ...

随机推荐

  1. C#题目及答案(2)

    1. NET和C#有什么区别 答:.NET一般指 .NET FrameWork框架,它是一种平台,一种技术. C#是一种编程语言,可以基于.NET平台的应用. 2.一列数的规则如下: 1.1.2.3. ...

  2. java中List,Set,Map用法以及区别

    List,Set,Map是否继承自Collection接口? 答:List,Set是,Map不是. Collection是最基本的集合接口,一个Collection代表一组Object,即Collec ...

  3. ImgQuoteUIWindow

    using System;using UnityEngine;using UnityEngine.UI;using UnityEditor;using System.Collections;using ...

  4. 蚂蚁金服“定损宝”现身AI顶级会议NeurIPS

    小蚂蚁说: 长期以来,车险定损(通过现场拍摄定损照片确定车辆损失,以作为保险公司理赔的依据)是车险理赔中最为重要的操作环节.以往传统保险公司的车险处理流程,一般为报案.现场查勘.提交理赔材料.审核.最 ...

  5. Codeforces 767D - Cartons of milk

    题目链接:http://codeforces.com/contest/767/problem/D D比C水系列. 将商店里面的牛奶按照保质期升序排序(显然优先买保质期久的)考虑二分答案,然后再将整个序 ...

  6. Intellij idea 2017 图标含义

    File Type Icon Recognized in ActionScript files ActionScript files Ultimate Edition Active Server Pa ...

  7. crontab 定时执行python脚本

    每天8点30分运行命令/tmp/run.sh * * * /tmp/run.sh 每两小时运行命令/tmp/run.sh */ * * * /tmp/run.sh

  8. win10上安装keras

    下载Anaconda https://www.anaconda.com/ 点击进入下载界面 选择Windows版本64位,python3.7 下载完成后 ,双击安装 等待安装完成! 安装MinGW包, ...

  9. module.exports小程序模块化,require

    小程序模块化 可以将一些公共的代码抽离成为一个单独的 js 文件,作为一个模块.模块只有通过 module.exports 或者 exports 才能对外暴露接口. tips:exports 是 mo ...

  10. 深入理解 java I/O

    Java 的 I/O 类库的基本架构 I/O 问题是任何编程语言都无法回避的问题,可以说 I/O 问题是整个人机交互的核心问题,因为 I/O 是机器获取和交换信息的主要渠道.在当今这个数据大爆炸时代, ...