题目链接

\(Description\)

一个\(N*M\)的有障碍的棋盘,先手放置棋子后,从后手开始轮流移动棋子,不能走重复的位置,不能移动的输。求在哪些位置放棋子是先手必胜的。

\(Solution\)

依旧先黑白染色,移动棋子对应一个匹配。

那么原图有两种情况:

一是存在完美匹配:那么无论先手选哪个点开始,假设是S集合某点,那么后手沿匹配边走,先手要么沿匹配边再走到S集合某点,要么没法走。即先手必败;

二是不存在完美匹配:

1.先手从最大匹配点开始,好像胜负情况都有,先不考虑;

2.先手从非最大匹配点开始,后手只能走到一个最大匹配点(若能走到非匹配点则又是一个匹配,与最大匹配矛盾),然后先手再走匹配边,发现后手只能走匹配边。

因为当前点如果存在非匹配边,则与起点那个非匹配点又形成了一条增广路,与最大匹配矛盾。

那这又成了情况一了,即后手必败。

即如果起点是非最大匹配点则必胜。起点只要在某种最大匹配下不是最大匹配点就满足。

再看情况二的1,如果起点可以不是最大匹配点,则先手必胜。否则先手必败,和情况二的2的结论一样。

现在问题是判断有哪些点不一定在最大匹配中。首先跑一遍最大匹配,未匹配的点肯定是。

然后这些未匹配点\(x\)可以替换掉邻接点\(v\)的一条匹配边,即\(match[v]\)也可以不在最大匹配中(原先的匹配边\(v\rightarrow match[v]\)替换为\(v\rightarrow x\))。

对未匹配点DFS一遍就可以了。

复杂度在于匹配,\(O(n^2)\)?

刚想起来最大匹配要拆点。。或者黑白染色?也不用拆点或者染色,每个点向四周都连边即可。

不拆点要注意match[]/lk[]这个数组对两边的集合都要给它赋值,匹配(bool OK())的时候保证它之前没有匹配。。

做题前已经忘了最大匹配长什么样了...

//1680kb	256ms
#include <cstdio>
#include <cctype>
#include <algorithm>
//#define gc() getchar()
#define MAXIN 350000
#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
#define ID(i,j) ((i-1)*m+j)
#define Ck(i,j) (mp[i][j]&&1<=(i)&&(i)<=n&&1<=(j)&&(j)<=m)
const int N=10005,M=N<<2; int n,m,vis[N],Time,Enum,H[N],nxt[M],to[M],lk[N],q[N];
bool mp[105][105],ok[N];
char IN[MAXIN],*SS=IN,*TT=IN; inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
}
#define AE(u,v) to[++Enum]=v,nxt[Enum]=H[u],H[u]=Enum,to[++Enum]=u,nxt[Enum]=H[v],H[v]=Enum
bool OK(int x)
{
vis[x]=Time;
for(int i=H[x],v; i; i=nxt[i])
if(vis[v=to[i]]!=Time)
{
vis[v]=Time;
if(!lk[v]||OK(lk[v])) return lk[v]=x,lk[x]=v;//两个都有啊
}
return 0;
}
void DFS(int x)
{
ok[x]=1;
for(int i=H[x]; i; i=nxt[i])
if(lk[to[i]] && !ok[lk[to[i]]]/*vis[lk[to[i]]]!=Time*/) DFS(lk[to[i]]);
} int main()
{
n=read(), m=read();
for(int i=1; i<=n; ++i)
{
register char c=gc();
for(; c!='.'&&c!='#'; c=gc());
for(int j=1; j<=m; ++j,c=gc()) mp[i][j]=c=='.';
}
int t=0;
for(int i=1,tot=0; i<=n; ++i)
for(int j=1; j<=m; ++j)
if(++tot,mp[i][j])
{
if(mp[i+1][j]/*i+1<=n*/) AE(tot,tot+m);
if(mp[i][j+1]) AE(tot,tot+1);
}
for(int i=1,tot=0; i<=n; ++i)
for(int j=1; j<=m; ++j)
if((++tot,mp[i][j]) && !lk[tot]/*!*/ && (++Time,!OK(tot)))
q[++t]=tot;
if(!t) return puts("LOSE"),0;
puts("WIN");
for(int i=1; i<=t; ++i) DFS(q[i]);
for(int i=1,tot=0; i<=n; ++i)
for(int j=1; j<=m; ++j)
if(ok[++tot]) printf("%d %d\n",i,j); return 0;
}

BZOJ.1443.[JSOI2009]游戏Game(二分图博弈 匈牙利)的更多相关文章

  1. BZOJ:1443: [JSOI2009]游戏Game

    原题链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1443 反正不看题解我是完全想不出系列…… 先把棋盘黑白染色,也就是同一对角线上颜色相同,使 ...

  2. BZOJ 1443 [JSOI2009]游戏Game ——博弈论

    好题. 首先看到棋盘,先黑白染色. 然后就是二分图的经典模型. 考虑最特殊的情况,完美匹配,那么先手必胜, 因为无论如何,先手走匹配边,后手无论走哪条边,总有对应的匹配边. 如果在不在最大匹配中出发, ...

  3. 【BZOJ】1443: [JSOI2009]游戏Game

    [算法]博弈论+二分图匹配(最大流) [题解]方格图黑白染色得到二分图, 二分图博弈:当起点不属于某个最大匹配时,后手必胜. 问题转化为那些点不属于某个最大匹配. 先找到一个最大匹配,非匹配点加入答案 ...

  4. BZOJ.2437.[NOI2011]兔兔与蛋蛋游戏(二分图博弈 匈牙利)

    题目链接 首先空格的移动等价于棋子在黑白格交替移动(设起点移向白格就是黑色),且不会走到到起点距离为奇数的黑格.到起点距离为偶数的白格(删掉就行了),且不会重复走一个格子. (然后策略就同上题了,只不 ...

  5. BZOJ:[JSOI2009]游戏Game【二分图匹配乱搞】

    题目大意:n*m的棋盘,其中有些区域是禁区,两个人在棋盘上进行博弈,后手选择棋子的初始位置,然后先后手轮流将棋子往上下左右移动,走过的区域不能再走,问能否有一个位置使得后手必胜 Input 输入数据首 ...

  6. bzoj 2437[Noi2011]兔兔与蛋蛋 黑白染色二分图+博弈+匈牙利新姿势

    noi2011 兔兔与蛋蛋 题目大意 直接看原题吧 就是\(n*m\)的格子上有一些白棋和一些黑棋和唯一一个空格 兔兔先手,蛋蛋后手 兔兔要把与空格相邻的其中一个白棋移到空格里 蛋蛋要把与空格相邻的其 ...

  7. BZOJ 1854: [Scoi2010]游戏(二分图匹配/并查集)

    题面: https://www.lydsy.com/JudgeOnline/problem.php?id=1854 题解: 1.二分图匹配: 首先我们发现每件装备只能在两种属性中选一种.因此,我们以每 ...

  8. 【BZOJ1443】游戏(二分图匹配,博弈论)

    [BZOJ1443]游戏(二分图匹配,博弈论) 题面 BZOJ 题解 很明显的二分图博弈问题. 发现每次移动一定是从一个黑点到达一个白点,或者反过来. 所以可以对于棋盘进行染色然后连边. 考虑一下必胜 ...

  9. BZOJ1443: [JSOI2009]游戏Game

    如果没有不能走的格子的话,和BZOJ2463一样,直接判断是否能二分图匹配 现在有了一些不能走的格子 黑白染色后求出最大匹配 如果是完备匹配,则无论如何后手都能转移到1*2的另一端,故先手必输 否则的 ...

随机推荐

  1. windows系统中hosts文件位置

    C:\Windows\System32\drivers\etc\hosts 10.0.0.213 mr1.bic.zte.com 10.0.0.2 mr2.bic.zte.com 10.0.0.102 ...

  2. Oracle 正则表达式函数-REGEXP_REPLACE

    背景 当初写oracle的一个存储过程,以前不知道sql里也有正则表达式,关于正则表达式教程很多了,这里只是记录下Oracle也有这个功能,下次再有类似需求用这个处理的确方便很多. 想起存储过程,就想 ...

  3. 转载:使用Nginx的必备软件(1.3.2)《深入理解Nginx》(陶辉)

    原文:https://book.2cto.com/201304/19612.html 如果要使用Nginx的常用功能,那么首先需要确保该操作系统上至少安装了如下软件. (1)GCC编译器 GCC(GN ...

  4. 罗克韦尔 Allen-Bradley MicroLogix 1400 查看、设置IP

    =============================================== 2019/4/14_第1次修改                       ccb_warlock == ...

  5. 深入理解JS中的变量及变量作用域

    JS的变量有两种,“全局变量”和“局部变量”. “全局变量”声明在函数外部,可供所有函数使用,(全局变量属于window)而“局部变量”声明在函数体内部,只能在定义该变量的函数体内使用. 1.全局变量 ...

  6. Java集合(Collection)综述

    1.集合简介 数学定义:一般地,我们把研究对象统称为元素.把一些元素组成的总体叫做集合. java集合定义:集合就是一个放数据的容器,准确的说是放数据对象引用的容器. java中通用集合类存放于jav ...

  7. pytest五:fixture_autouse=True

    平常写自动化用例会写一些前置的 fixture 操作,用例需要用到就直接传该函数的参数名称就行了.当用例很多的时候,每次都传返个参数,会比较麻烦.fixture 里面有个参数 autouse,默讣是 ...

  8. gitlab的docker安装,非标准端口,如何处理?

    这个问题的定义是: 如果我们不是用的80端口对外提供服务, 但gitlab的docker容器里的nginx却是80端口, 那么,在我们clone代码时,带的Http地址也会是80端口,这显然会出现问题 ...

  9. poj1743

    题解: 后缀数组+二分答案 首先会发现这题实质上就是求最长不重复的相同子段 首先二分答案长度,之后对每一段信息进行维护 一段信息即保证这一段的sa值都大于mid即可 然后找到这段中后缀位置最大和最小处 ...

  10. Linux下安装JDK7和TomCat7

    [BEGIN] 2016/9/9 14:20:49[root@rzhd jdk]# ll总用量 149916-rw-r--r-- 1 root root 153512879 9月 9 14:20 jd ...