HanLP中的人名识别分析详解
在看源码之前,先看几遍论文《基于角色标注的中国人名自动识别研究》
关于命名识别的一些问题,可参考下列一些issue:
u u名字识别的问题 #387
u u机构名识别错误
u u关于层叠HMM中文实体识别的过程
HanLP参考博客:
词性标注
层叠HMM-Viterbi角色标注模型下的机构名识别
分词
在HMM与分词、词性标注、命名实体识别中说:
分词:给定一个字的序列,找出最可能的标签序列(断句符号:[词尾]或[非词尾]构成的序列)。结巴分词目前就是利用BMES标签来分词的,B(开头),M(中间),E(结尾),S(独立成词)
分词也是采用了维特比算法的动态规划性质求解的,具体可参考:文本挖掘的分词原理
角色观察
以“唱首张学友的歌情已逝”为例,
先将起始顶点 始##始,角色标注为:NR.A 和 NR.K,频次默认为1
对于第一个词“唱首”,它不存在于 nr.txt中,EnumItem<NR> nrEnumItem = PersonDictionary.dictionary.get(vertex.realWord);返回null,于是根据它本身的词性猜一个角色标注:
由于"唱首"的Attribute为 nz 16,不是nr 和 nnt,故默认给它指定一个角色NR.A,频率为nr.tr.txt中 NR.A 角色的总频率。
此时,角色列表如下:
接下来是顶点“张”,由于“张”在nr.txt中,因此PersonDictionary.dictionary.get(vertex.realWord)返回EnumItem对象,直接将它加入到角色列表中:
加入“张”之后的角色列表如下:
“唱首张学友的歌情已逝” 整句的角色列表如下:
至此,角色观察 部分 就完成了。
总结一下,对句子进行角色观察,首先是通过分词算法将句子分成若干个词,然后对每个词查询人名词典(PersonDictionary)。
u 若这个词在人名词典中(nr.txt),则记录该词的角色,所有的角色在com.hankcs.hanlp.corpus.tag.NR.java中定义。
u 若这个词不在人名词典中,则根据该词的Attribute “猜一个角色”。在猜的过程中,有些词在核心词典中可能已经标注为nr或者nnt了,这时会做分裂处理。其他情况下则是将这个词标上NR.A角色,频率为 NR.A 在转移矩阵中的总词频。
维特比算法(动态规划)求解最优路径
在上图中,给每个词都打上了角色标记,可以看出,一个词可以有多个标记。而我们需要将这些词选择一条路径最短的角色路径。参考隐马尔可夫模型维特比算法详解
List<NR> nrList = viterbiComputeSimply(roleTagList);//some code....return Viterbi.computeEnumSimply(roleTagList, PersonDictionary.transformMatrixDictionary);
而这个过程,其实就是:维特比算法解码隐藏状态序列。在这里,五元组是:
u 隐藏状态集合 com.hankcs.hanlp.corpus.tag.NR.java 定义的各个人名标签
u 观察状态集合 已经分好词的各个tagList中元素(相当于分词结果)
u 转移概率矩阵 由 nr.tr.txt 文件生成得到。具体可参考:
u 发射概率 某个人名标签(隐藏状态)出现的次数 除以 所有标签出现的总次数
Math.log((item.getFrequency(cur) + 1e-8) / transformMatrixDictionary.getTotalFrequency(cur)
u 初始状态(始##始) 和 结束状态(末##末)
维特比解码隐藏状态的动态规划求解核心代码如下:
for (E cur : item.labelMap.keySet())
{
double now = transformMatrixDictionary.transititon_probability[pre.ordinal()][cur.ordinal()] - Math.log((item.getFrequency(cur) + 1e-8) / transformMatrixDictionary.getTotalFrequency(cur));
if (perfect_cost > now)
{
perfect_cost = now;
perfect_tag = cur;
}
}
transformMatrixDictionary.transititon_probability[pre.ordinal()][cur.ordinal()] 是前一个隐藏状态 pre.ordinal()转换到当前隐藏状态cur.ordinal()的转移概率。Math.log((item.getFrequency(cur) + 1e-8) / transformMatrixDictionary.getTotalFrequency(cur)是当前隐藏状态的发射概率。二者“相减”得到一个概率 保存在double now变量中,然后通过 for 循环找出 当前观察状态 对应的 最可能的(perfect_cost最小) 隐藏状态 perfect_tag。
至于为什么是上面那个公式来计算转移概率和发射概率,可参考论文:《基于角色标注的中国人名自动识别研究》
在上面例子中,得到的最优隐藏状态序列(最优路径)K->A->K->Z->L->E->A->A 如下:
nrList = {LinkedList@1065} size = 8
"K" 始##始
"A" 唱首
"K" 张
"Z" 学友
"L" 的
"E" 歌
"A" 情已逝
"A" 末##末
例如:
隐藏状态---观察状态
"K"----------始##始
最大匹配
有了最优隐藏序列:KAKZLEAA,接下来就是:后续的“最大匹配处理”了。
PersonDictionary.parsePattern(nrList, pWordSegResult, wordNetOptimum, wordNetAll);
在最大匹配之前,会进行“模式拆分”。在com.hankcs.hanlp.corpus.tag.NR.java 定义了隐藏状态的具体含义。比如说,若最优隐藏序列中 存在 'U' 或者 'V',
U Ppf 人名的上文和姓成词 这里【有关】天培的壮烈
V Pnw 三字人名的末字和下文成词 龚学平等领导, 邓颖【超生】前
则会做“拆分处理”
switch(nr)
{
case U:
//拆分成K B
case V:
//视情况拆分
}
拆分完成之后,重新得到一个新的隐藏序列(模式)
String pattern = sbPattern.toString();
接下来,就用AC自动机进行最大模式匹配了,并将匹配的结果存储到“最优词网”中。当然,在这里就可以自定义一些针对特定应用的 识别处理规则
trie.parseText(pattern, new AhoCorasickDoubleArrayTrie.IHit<NRPattern>(){
//.....
wordNetOptimum.insert(offset, new Vertex(Predefine.TAG_PEOPLE, name, ATTRIBUTE, WORD_ID), wordNetAll);
}
将识别出来的人名保存到最优词网后,再基于最优词网调用一次维特比分词算法,得到最终的分词结果---细分结果。
if (wordNetOptimum.size() != preSize)
{
vertexList = viterbi(wordNetOptimum);
if (HanLP.Config.DEBUG)
{
System.out.printf("细分词网:\n%s\n", wordNetOptimum);
}
}
总结
源码上的人名识别基本上是按照论文中的内容来实现的。对于一个给定的句子,先进行下面三大步骤处理:
角色观察
维特比算法解码求解隐藏状态(求解各个分词 的 角色标记)
对角色标记进行最大匹配(可做一些后处理操作)
最后,再使用维特比算法进行一次分词,得到细分结果,即为最后的识别结果。
这篇文章里面没有写维特比分词算法的详细过程,以及转移矩阵的生成过程,以后有时间再补上。看源码,对隐马模型的理解又加深了一点,感受到了理论的东西如何用代码一步步来实现。由于我也是初学,对源码的理解不够深入或者存在一些偏差,欢迎批评指正。
关于动态规划的一个简单示例,可参考:动态规划之Fib数列类问题应用
文章来源hapjin 的博客
HanLP中的人名识别分析详解的更多相关文章
- HanLP中人名识别分析详解
HanLP中人名识别分析详解 在看源码之前,先看几遍论文<基于角色标注的中国人名自动识别研究> 关于命名识别的一些问题,可参考下列一些issue: l ·名字识别的问题 #387 l ·机 ...
- HanLP用户自定义词典源码分析详解
1. 官方文档及参考链接 l 关于词典问题Issue,首先参考:FAQ l 自定义词典其实是基于规则的分词,它的用法参考这个issue l 如果有些数量词.字母词需要分词,可参考:P2P和C2C这种词 ...
- HanLP中人名识别分析
HanLP中人名识别分析 在看源码之前,先看几遍论文<基于角色标注的中国人名自动识别研究> 关于命名识别的一些问题,可参考下列一些issue: 名字识别的问题 #387 机构名识别错误 关 ...
- python中requests库使用方法详解
目录 python中requests库使用方法详解 官方文档 什么是Requests 安装Requests库 基本的GET请求 带参数的GET请求 解析json 添加headers 基本POST请求 ...
- Nmap在实战中的高级用法(详解)
@ 目录 Nmap在实战中的高级用法(详解) Nmap简单的扫描方式: 一.Nmap高级选项 1.查看本地路由与接口 2.指定网口与IP地址 3.定制探测包 二.Nmap扫描防火墙 1.SYN扫描 2 ...
- Memcache的使用和协议分析详解
Memcache的使用和协议分析详解 作者:heiyeluren博客:http://blog.csdn.NET/heiyeshuwu时间:2006-11-12关键字:PHP Memcache Linu ...
- Linux中/proc目录下文件详解
转载于:http://blog.chinaunix.net/uid-10449864-id-2956854.html Linux中/proc目录下文件详解(一)/proc文件系统下的多种文件提供的系统 ...
- C#中的Linq to Xml详解
这篇文章主要介绍了C#中的Linq to Xml详解,本文给出转换步骤以及大量实例,讲解了生成xml.查询并修改xml.监听xml事件.处理xml流等内容,需要的朋友可以参考下 一.生成Xml 为了能 ...
- wav文件格式分析详解
wav文件格式分析详解 文章转载自:http://blog.csdn.net/BlueSoal/article/details/932395 一.综述 WAVE文件作为多媒体中使用的声波文件格式 ...
随机推荐
- 4-log4j2之切分日志文件
一.添加maven依赖 <dependencies> <dependency> <groupId>org.apache.logging.log4j</grou ...
- setcookie
cookie 中值的部分在发送的时候会被自动用 urlencode 编码并在接收到的时候被自动解码并把值赋给与自己同名的 cookie 变量 首先声明,浏览的Cookie操作都是通过HTTP Head ...
- ubantu查看进程操作
可以使用ps命令.它能显示当前运行中进程的相关信息,包括进程的PID.Linux和UNIX都支持ps命令,显示所有运行中进程的相关信息. ps命令能提供一份当前进程的快照.如果想状态可以自动刷新,可以 ...
- vue学习--自定义全局vue组件
文档目录: |--components |-loading(组件文件夹) |-loading.vue (loading组件核心) |-index.js //配置导出组件,并且install 主要配置到 ...
- python day06 作业答案
1. count=1 while count<11: fen=input('请第{}个评委打分' .format( count)) if int(fen) >5 and int(fen) ...
- HDU 6140 17多校8 Hybrid Crystals(思维题)
题目传送: Hybrid Crystals Problem Description > Kyber crystals, also called the living crystal or sim ...
- react native 之 事件监听 和 回调函数
同原生一样,react native 同样也有事件监听和回调函数这玩意. 场景很多,比如:A界面push到B界面,B界面再pop回A界面,可以给A界面传值或者告诉A刷新界面. 事件监听 事件监听类似于 ...
- 【Python】Excel操作-2 (07版本以下Excel操作,其实不怎么用了,麻蛋,预习了2天课间才发现,还说怎么跟老师讲的不一样)
#保存修改Excel import xlrd from xlutils.copy import copy #打开Excel文档并将内容读取到内存 readbook=xlrd.open_workbook ...
- 对jQuery ajax的认识
1.ajax() 方法通过 HTTP 请求加载远程数据. 2.该方法是 jQuery 底层 AJAX 实现.简单易用的高层实现见 $.get, $.post 等.$.ajax() 返回其创建的 XML ...
- Python学习笔记第七周
目录: 1.静态方法 @staticmethod 2.类方法 @classmethod 3.属性方法 @property 4.类的特殊成员方法 a) __doc__表示类的描述信息 b) __ ...