Tarjan 强连通分量 及 双联通分量(求割点,割边)

众所周知,Tarjan的三大算法分别为

(1)         有向图的强联通分量

(2)         无向图的双联通分量(求割点,桥)

(3)         最近公共祖先

今天主要给未来的自己讲解一下前两个应用,让未来的自己不会向现在的自己一样又忘了Tarjan怎么写。熟悉DFS的话,理解起来会简单很多。

(1)         有向图的强联通分量

首先解释Tarjan中几个比较重要的值

DFN[i] : 节点i被访问到的次序

LOW[i]: 节点i的子孙节点能够追溯到的次序最早的祖先节点

Stack[i]: 存储强连通分量

VIS[i]  : VIS[i] = 1 则节点在栈中,否则不在

DFN[i] == 0 时,很明显,就是该点没有被访问过

DFN[i]==LOW[i], 切换成中文,意思就是节点i被访问到的次序,是他的子孙节点中能够追溯到的最早次序,换句话说,i和i的子孙节点(并非所有子孙节点,而是所有进栈的子孙节点)构成了一个强连通分量。

接下来就是重头戏了。让我们开始DFS。

(1) Tarjan开始,对于节点u

有DFN[u] = LOW[u] = ++deep

因为第u个点第一次被访问到的时候还没有访问其子节点

把u加入栈中(将来用于回溯)并且打上VIS标记

(2) 对于u的每一条边,所访问到的v节点

如果v节点没有被访问过,那就直接回到第一步

回溯结束后(对于没有子节点的节点,可以见得它的LOW 就等于它的 DFN)

LOW[u] = min(LOW[u],LOW[v])

因为LOW[u] 要取到u的所有子节点中最小的LOW[v]值

如果v节点已经在栈中了,

直接LOW[u] = min(LOW[u],LOW[v])

同理,此时已构成环

如果v节点被访问到,且v节点不在栈中了

证明v已经出栈,不可与u点构成强联通分量

(3) DFN[i]==LOW[i]

当我们回溯到底i个点发现它满足上述条件的话,证明该点和子孙节点能够构成强联通分量。且i是最早入栈的(LOW的定义),这时候只需要退栈到栈顶不是i点就OK了。

附上一份代码,

模板Tarjan  POJ 2186

写一次就明白了

const int maxn = 150000;

struct Edge

{

int from,to,next;

}edge[maxn];

int head[maxn],DFN[maxn],low[maxn];

int Stack[maxn],vis[maxn],color[maxn],deg[maxn];

int deep,top,k,tol;

void init()

{

k = tol = top = deep = 0;

CLR(head,-1);

CLR(DFN,0);

CLR(low,0);

CLR(color,0);

CLR(Stack,0);

CLR(vis,0);

CLR(deg,0);

}

void addedge(int u,int v)

{

edge[tol].from = u;

edge[tol].to = v;

edge[tol].next = head[u];

head[u] = tol++;

}

void tarjan(int u)

{

DFN[u] = low[u] = ++deep;

vis[u] = 1;

Stack[++top] = u;

for(int i = head[u]; ~i; i = edge[i].next){

int v = edge[i].to;

if(!DFN[v]){

tarjan(v);

low[u] = min(low[v],low[u]);

}

else if(vis[v]){

low[u] = min(low[v],low[u]);

}

}

if(DFN[u] == low[u]){

color[u] = ++k;

vis[u] = 0;

while(Stack[top]!=u){

color[Stack[top]] = k;

vis[Stack[top]] = 0;

top--;

}

top--;

}

}

求割边:当LOW[V]>DFN[U]时,证明v点和它的子孙节点无法回溯到u,v间为桥

求割点:当LOW[V]>=DFN[U]时,证明v点和它的子孙节点无法回溯到u的祖先(可以回溯到u).u点为割点

根节点如果有多个子节点,则为割点

const int maxn = 1500;
struct Edge
{
int from,to,next;
int cut;
}edge[maxn];
int head[maxn],low[maxn],DFN[maxn];
int n,deep,tol,ans;
int cut_point[maxn]; void init()
{
ans = tol = deep = 0;
CLR(head,-1);
CLR(cut_point,0
CLR(DFN,0);
CLR(low,0);
} void addedge(int u,int v)
{
edge[tol].from = u;
edge[tol].to = v;
edge[tol].next = head[u];
head[u] = tol++;
} void tarjan(int u, int fa) { //u在DFS树中的父节点是fa
low[u] = DFN[u] = ++deep;
int child = 0; //子节点数目
for(int i = head[u]; ~i; i = edge[i].next) {
int v = edge[i].to;
if( fa == v ) continue;
if(!DFN[v]) {
child++;
tarjan(v, u);
low[u] = min(low[u], low[v]);
if(low[v] >= DFN[u]) {
if(low[v] > DFN[u]) edge[i].cut = 1;
cut_point[u] = 1;
}
}
else low[u] = min(low[u], DFN[v]);
}
if(fa < 0 && child == 1) cut_point[u] = 0;
} int search_cut_point()
{
tarjan(1,-1);
for(int i=1;i<=n;i++)
if(cut_point[i])
ans++;
}

Tarjan 强连通分量 及 双联通分量(求割点,割边)的更多相关文章

  1. 『Tarjan算法 无向图的双联通分量』

    无向图的双连通分量 定义:若一张无向连通图不存在割点,则称它为"点双连通图".若一张无向连通图不存在割边,则称它为"边双连通图". 无向图图的极大点双连通子图被 ...

  2. 无向图边双联通分量 tarjan 模板

    #include <bits/stdc++.h> using namespace std; const int MAXN = 100005; const int MAXM = 500005 ...

  3. 洛谷P2860 [USACO06JAN]冗余路径Redundant Paths(tarjan求边双联通分量)

    题目描述 In order to get from one of the F (1 <= F <= 5,000) grazing fields (which are numbered 1. ...

  4. POJ 2942 Knights of the Round Table 补图+tarjan求点双联通分量+二分图染色+debug

    题面还好,就不描述了 重点说题解: 由于仇恨关系不好处理,所以可以搞补图存不仇恨关系, 如果一个桌子上面的人能坐到一起,显然他们满足能构成一个环 所以跑点双联通分量 求点双联通分量我用的是向栈中pus ...

  5. POJ2942 Knights of the Round Table【Tarjan点双联通分量】【二分图染色】【补图】

    LINK 题目大意 有一群人,其中有一些人之间有矛盾,现在要求选出一些人形成一个环,这个环要满足如下条件: 1.人数大于1 2.总人数是奇数 3.有矛盾的人不能相邻 问有多少人不能和任何人形成任何的环 ...

  6. 图连通性【tarjan点双连通分量、边双联通分量】【无向图】

    根据 李煜东大牛:图连通性若干拓展问题探讨 ppt学习. 有割点不一定有割边,有割边不一定有割点. 理解low[u]的定义很重要. 1.无向图求割点.点双联通分量: 如果对一条边(x,y),如果low ...

  7. [J]computer network tarjan边双联通分量+树的直径

    https://odzkskevi.qnssl.com/b660f16d70db1969261cd8b11235ec99?v=1537580031 [2012-2013 ACM Central Reg ...

  8. poj 3177&&3352 求边双联通分量,先求桥,然后求分量( 临界表代码)

    /*这道题是没有重边的,求加几条边构成双联通,求边联通分量,先求出桥然后缩点,成一个棵树 找叶子节点的个数*/ #include<stdio.h>//用容器写在3177这个题上会超内存,但 ...

  9. hdu 3352 求边双联通分量模板题(容器)

    /*这道题是没有重边的,求加几条边构成双联通,求边联通分量,先求出桥然后缩点,成一个棵树 找叶子节点的个数*/ #include<stdio.h> #include<string.h ...

随机推荐

  1. shell编程学习笔记(一):编写我的第一段代码

    目前在学习Shell编程,我会把我的学习笔记记录在这里.大神可以直接略过~ 嗯,第一段代码,肯定是要输出Hello World了~ 以下蓝色字体的内容为linux命令,红色字体的内容为输出的内容: # ...

  2. ARP协议具体解释之Gratuitous ARP(免费ARP)

    ARP协议具体解释之Gratuitous ARP(免费ARP) Gratuitous ARP(免费ARP) Gratuitous ARP也称为免费ARP.无故ARP.Gratuitous ARP不同于 ...

  3. 求标准分sql

    if object_id('tempdb..#tempTable') is not null Begin drop table #tempTable End [校区],[学年],[考试年级],[考试类 ...

  4. 基于window自带功能生成目录树

    在写文档时,生成目录树是非常有必要的,可以清晰明了地用图阐释一些事情. 1 生成目录树 1.1 方案1:操作繁(只显示文件夹) 1 - win + R 2 - 输入 “CMD” ,打开命令提示窗口“ ...

  5. Easyui的DataGrid 清除所有勾选的行。

    $('#grid').datagrid('clearChecked')='none';//清除所有勾选的行.

  6. 【转载】JAVA基础:注解

    原文:https://www.cnblogs.com/xdp-gacl/p/3622275.html#undefined 一.认识注解 注解(Annotation)很重要,未来的开发模式都是基于注解的 ...

  7. python中的ord函数

    chr().unichr()和ord() chr()函数用一个范围在range(256)内的(就是0-255)整数作参数,返回一个对应的字符.unichr()跟它一样,只不过返回的是Unicode字符 ...

  8. TCP中的KeepAlive与HTTP中的Keep-Alive

    KeepAlive 与 Keep-Alive 前言 昨天被问到了HTTP中Keep-Alive的概念,看名字我只知道是保持连接用的,但是对于他怎么结束连接,为什么要用他这些就不是很清楚了,今天查了一下 ...

  9. STM32 ADC 采样 频率的确定

    一 STM32 ADC 采样频率的确定 1.       : 先看一些资料,确定一下ADC 的时钟: (1),由时钟控制器提供的ADCCLK 时钟和PCLK2(APB2 时钟)同步.CLK 控制器为A ...

  10. Git 移动操作

    顾名思义移动(move )操作移动目录或文件从一个位置到另一个.Tom 决定移动到src目录下的源代码.因此,修改后的目录结构看起来会像这样. [tom@CentOS project]$ pwd /h ...