5 “step”计算

参考《DSO windowed optimization 公式》,计算各个优化变量的增加量。

公式再写一下:

\[\begin{align} \begin{bmatrix} H_{\rho\rho} & H_{\rho X} \\ H_{X\rho} & H_{XX} \end{bmatrix} \begin{bmatrix} \delta \rho \\ \delta X \end{bmatrix} &= - \begin{bmatrix} J_{\rho}^T r \\ J_X^T r \end{bmatrix} \notag \\
\begin{bmatrix} H_{\rho\rho} & H_{\rho X} \\ 0 & H_{XX} - H_{X\rho} H_{\rho\rho}^{-1} H_{\rho X} \end{bmatrix} \begin{bmatrix} \delta \rho \\ \delta X \end{bmatrix} &= - \begin{bmatrix} J_{\rho}^T r \\ J_X^T r - H_{X\rho} H_{\rho\rho}^{-1} J_{\rho}^T r \end{bmatrix} \notag \end{align}\]

我们的目标是用上面的第二个方程

\[(H_{XX} - H_{X\rho} H_{\rho\rho}^{-1} H_{\rho X})\delta X = -(J_X^T r - H_{X\rho} H_{\rho\rho}^{-1} J_{\rho}^T r)
\]

计算出 \(\delta X\),再代回第一个方程

\[H_{\rho\rho}\delta\rho+H_{\rho X}\delta X = -J_{\rho}^T r
\]

计算 \(\delta \rho\)。

5.1 \(\delta X\) 计算

这里 ldlt 计算

\[(H_{XX} - H_{X\rho} H_{\rho\rho}^{-1} H_{\rho X})(-\delta X) = J_X^T r - H_{X\rho} H_{\rho\rho}^{-1} J_{\rho}^T r
\]

的结果\(-\delta X\)。少了一个负号,所以后面在函数 EnergyFunctional::resubstituteF_MT计算内参增量计算帧增量,加了一个负号。这里不要犯迷糊,一开始什么不懂的时候,认为这里 Engel 写错了。

这个计算还是很清晰的。

5.2 \(\delta \rho\) 计算

整理一下,我们要计算的方程是这个:

\[\delta\rho = -H_{\rho\rho}^{-1}(J_{\rho}^T r+H_{\rho X}\delta X)
\]

\(-H_{\rho\rho}^{-1}\) 是一个对角阵,如果看上面方程的一行,得到的结果是

\[\begin{align} {\delta \rho^{(j)}} = -\left( \sum_{i=1}^{N} {\partial r^{(i)} \over \partial \rho^{(j)}}^T {\partial r^{(i)} \over \partial \rho^{(j)}} \right)^{-1} \left( \sum_{i=1}^{N} {\partial r^{(i)} \over \partial \rho^{(j)}}^T r^{(i)} + \\ \sum_{i=1}^{N} {\partial r^{(i)} \over \partial \rho^{(j)}}^T \left( {\partial r^{(i)} \over \partial C} {\delta C} + {\partial r^{(i)} \over \partial X_t} {\delta X_t} + {\partial r^{(i)} \over \partial X_h} {\delta X_h} \right) \right) \notag \end{align}
\]

(如果 \(r^{(i)}\) 与 \(\rho^{(j)}\) 没有关系,导数 \({\partial r^{(i)} \over \partial \rho^{(j)}}\) 为 0。)

这个计算比较麻烦,计算过程在函数 EnergyFunctional::resubstituteFPt 中,首先在 EnergyFunctional::resubstituteF_MT的这里 准备xAd数组,这个数组的[h,t]是

\[-\delta X_h^T \frac{\partial X_{th}}{\partial X_h}^T - \delta X_t^T \frac{\partial X_{th}}{\partial X_t}^T
\]

嗯,事先把 adjoint 导数转换准备好。

接着在这里几行计算 \(\delta \rho^{(j)}\):

		float b = p->bdSumF;
b -= xc.dot(p->Hcd_accAF + p->Hcd_accLF); for(EFResidual* r : p->residualsAll)
{
if(!r->isActive()) continue;
b -= xAd[r->hostIDX*nFrames + r->targetIDX] * r->JpJdF;
} p->data->step = - b*p->HdiF;

p->bdSumF 对应 \(\sum_{i=1}^N {\partial r^{(i)} \over \partial \rho^{(j)}}^T r^{(i)}\)。

p->Hcd_accAF + p->Hcd_accLF 对应 \(\sum_{i=1}^N {\partial r^{(i)} \over \partial C}^T{\partial r^{(i)} \over \partial \rho^{(j)}}\)。

r->JpJdF 对应 \({\partial r^{(i)} \over \partial X_{th}}^T{\partial r^{(i)} \over \partial \rho^{(j)}}\)。

结果就出来了。

DSO windowed optimization 代码 (4)的更多相关文章

  1. DSO windowed optimization 代码 (2)

    3 非 Schur Complement 部分信息计算 参考<DSO windowed optimization 公式>,非Schur Complement 部分指 \(H_{XX}\) ...

  2. DSO windowed optimization 代码 (3)

    4 Schur Complement 部分信息计算 参考<DSO windowed optimization 公式>,Schur Complement 部分指 Hsc(\(H_{X\rho ...

  3. DSO windowed optimization 代码 (1)

    这里不想解释怎么 marginalize,什么是 First-Estimates Jacobian (FEJ).这里只看看代码,看看Hessian矩阵是怎么构造出来的. 1 优化流程 整个优化过程,也 ...

  4. DSO windowed optimization 公式

    这里有一个细节,我想了很久才想明白,DSO 中的 residual 联系了两个关键帧之间的相对位姿,但是最终需要优化帧的绝对位姿,中间的导数怎么转换?这里使用的是李群.李代数中的Adjoint. 参考 ...

  5. Adjoint of SE(3)

    以前看的书都提到 SE(3) 和 se(3) 的 Adjoint,但是并没有讲这个东西是干什么用的,只是给了一堆性质.这东西来自群论. 参考 Lie Groups for 2D and 3D Tran ...

  6. Paper Reading: Stereo DSO

    开篇第一篇就写一个paper reading吧,用markdown+vim写东西切换中英文挺麻烦的,有些就偷懒都用英文写了. Stereo DSO: Large-Scale Direct Sparse ...

  7. Omnidirectional DSO: Direct Sparse Odometry with Fisheye Cameras 论文摘要

    1. Abstract 通过一种Unified Omnidirectional Model作为投影方程. 这种方式可以使用图像的所有内容包括有强畸变的区域,而现存的视觉里程计方案只能修正或者切掉来使用 ...

  8. OD: GS Bypasing via SEH / .data

    通过 SEH 绕过 GS 保护 GS 机制没对 SEH 提供保护,所以可心通过攻击异常来绕过 GS. 实验环境为: VMware : Windows sp4, 此版本无 SafeSEH 的影响 Vis ...

  9. [翻译] JFDepthView 给view提供3D景深

    JFDepthView 给view提供3D景深 https://github.com/atljeremy/JFDepthView This is an iOS project for presenti ...

随机推荐

  1. BZOJ4001[TJOI2015]概率论——卡特兰数

    题目描述 输入 输入一个正整数N,代表有根树的结点数 输出 输出这棵树期望的叶子节点数.要求误差小于1e-9 样例输入 1 样例输出 1.000000000 提示 1<=N<=10^9 设 ...

  2. pipreqs 组件

    作用 帮助你查询所有需要用的组件 安装 pip install pipreqs   使用 """ 切换到项目的路径下 执行查询当前文件下所需要的所有的组件 会生成一个 r ...

  3. MT【10】和三次有关的一个因式分解

    解答: 评:1此处因式分解也可以看成关于$a$的函数$f(a)$利用多项式有理根的有关知识得到 2.此处我们可以得到关于$\Delta ABC$的余弦的一个不等式$cosA+cosB+cosC> ...

  4. Hdoj 1064 Financial Management

    题目描述 Problem Description Larry graduated this year and finally has a job. He's making a lot of money ...

  5. suoi08 一收一行破 (tarjanLca+树状数组)

    用一个差分树状数组维护一下每个深度的和,然后每次拿着路径端点和lca加一加减一减就行了 #include<bits/stdc++.h> #define pa pair<int,int ...

  6. Python进制表示及转换

    进制表示: 二进制:>>> abin = 0b1000>>> abin8 八进制:>>> aoct = 0o123 (数字0,字母o)>&g ...

  7. 百度地图手机端单触点单击和长按事件,解决部分手机(小米手机)地图单击事件失效,多触点、拖动依然触发长按的bug

    /** * Author 岳晓 * * 对百度地图的事件扩展,目前扩展了fastclick和longclick, * 解决某些设备click不执行的问题 * 解决长按事件在拖动.多触点依然执行的bug ...

  8. max,min,Zip函数(十一)

    zip函数,拉链,传两个有序的参数,将他们一一对应为元祖形式 max,min比较默认比较一个元素,处理的是可迭代对象,相当于for循环取出每个元素进行比较,注意:不同类型之间不可比较 #!/usr/b ...

  9. ZOJ_3950_How Many Nines 解题报告及如何对程序进行测试修改

    The 17th Zhejiang University Programming Contest Sponsored by TuSimple Solution: #include <stdio. ...

  10. oi程序提交注意:bool

    比如我一个程序用了bool类型(#include<stdbool.h>) 在poj以c的方式提交不通过显示Compile Error,而用gcc的方式提交通过了, 也许其它的#includ ...