题面:[HNOI2009]最小圈

题目描述:

考虑带权的有向图 $ G=(V,E) $ 以及 $ w:E\rightarrow R $ ,每条边 $ e=(i,j)(i\neq j,i\in V,j\in V) $ 的权值定义为 $ w_{i,j} $ ,令 $ n=|V| $ 。 $ c=(c_1,c_2,\cdots,c_k)(c_i\in V) $ 是 $ G $ 中的一个圈当且仅当 $ (c_i,c_{i+1})(1\le i\lt k) $ 和 $ (c_k,c_1) $ 都在 $ E $ 中,这时称 $ k $ 为圈 $ c $ 的长度同时令 $ c_{k+1}=c_1 $ ,并定义圈 $ c=(c_1,c_2,\cdots,c_k) $ 的平均值为 $ \mu(c)=\sum\limits_{i=1}^{k} w_{c_i,c_{i+1}}/k $ ,即 $ c $ 上所有边的权值的平均值。令 $ \mu'(c)=Min(\mu(c)) $ 为 $ G $ 中所有圈 $ c $ 的平均值的最小值。现在的目标是:在给定了一个图 $ G=(V,E) $ 以及 $ w:E\rightarrow R $ 之后,请求出 $ G $ 中所有圈 $ c $ 的平均值的最小值 $ \mu'(c)=Min(\mu(c)) $

输入格式:

第一行2个正整数,分别为 $ n $ 和 $ m $ ,并用一个空格隔开,只用 $ n=|V|,m=|E| $ 分别表示图中有 $ n $ 个点 $ m $ 条边。

接下来m行,每行3个数 $ i,j,w_{i,j} $ ,表示有一条边 $ (i,j) $ 且该边的权值为 $ w_{i,j} $ 。输入数据保证图 $ G=(V,E) $ 连通,存在圈且有一个点能到达其他所有点。

输出格式:

请输出一个实数 $ \mu'(c)=Min(\mu(c)) $ ,要求输出到小数点后8位。

输入样例#1:

4 5

1 2 5

2 3 5

3 1 5

2 4 3

4 1 3

输出样例#1:

3.66666667

输入样例#2:

2 2

1 2 -2.9

2 1 -3.1

输出样例#2:

-3.00000000

说明:

对于100%的数据, $ n\le 3000,m\le 10000,|w_{i,j}| \le 10^7 $



$ solution: $

这道题要我们求平均值的最小值,所以我们考虑二分答案的可能性,先列出答案的意义:

$ ans=\frac{\sum\limits_{i=1}^{k} w_{c_i,c_{i+1}}}{K}\quad _{(c_{k+1}=c_1)} $

我们将它转换一下:

$ ans\times k={\sum\limits_{i=1}^{k} w_{c_i,c_{i+1}}}\quad _{(c_{k+1}=c_1)} $

$ 0=\sum\limits_{i=1}^{k} (w_{c_i,c_{i+1}})-ans\times k\quad _{(c_{k+1}=c_1)} $

$ 0=\sum\limits_{i=1}^{k}(w_{c_i,c_{i+1}}-ans)\quad _{(c_{k+1}=c_1)} $

这样我们发现它已经化成了一个二分答案的常用等式(等式右边可以 $ O(n) $ 求出来,且具备单调性)而我们注意到等式左边为0,所以我们可以二分ans,并将边权改为 $ w_{c_i,c_{i+1}}-mid $ ,然后求负环即可。

为什么可以这样做呢?这个较地震那一题好讲一些,我们当前二分出来的平均值mid,我们将每一条边的边权都减去它,如果存在负环,说明这个环上所有边权实际边权值加起来的平均值一定小于mid!(这里需要仔细想一下)



$ code: $

#include<iostream>
#include<cstdio>
#include<iomanip>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<ctime>
#include<cmath>
#include<vector>
#include<queue>
#include<map>
#include<set> #define ll long long
#define db double
#define inf 0x7fffffff
#define rg register int using namespace std; const db cha=1e-9; struct su{
db v;int to,next;
}a[10005]; bool f;
int n,m,top;
int tou[3005];
bool vis[3005];
db mid,dis[3005]; inline int qr(){
char ch;
while((ch=getchar())<'0'||ch>'9');
int res=ch^48;
while((ch=getchar())>='0'&&ch<='9')
res=res*10+(ch^48);
return res;
} inline void add(int x,int y){
scanf("%lf",&a[++top].v);
a[top].to=y;
a[top].next=tou[x];
tou[x]=top;
} inline void spfa(int i){
vis[i]=1;
for(rg j=tou[i];j;j=a[j].next){
if(dis[a[j].to]>dis[i]+a[j].v-mid){
dis[a[j].to]=dis[i]+a[j].v-mid;
if(vis[a[j].to])return void(f=1);
else spfa(a[j].to);
}
}vis[i]=0;
} inline bool check(){
for(rg i=1;i<=n;++i)
dis[i]=vis[i]=0;;f=0;
for(rg i=1;i<=n&&!f;++i)
if(!vis[i])spfa(i);
return f;
} int main(){
freopen("cycle.in","r",stdin);
freopen("cycle.out","w",stdout);
n=qr(),m=qr();
for(rg i=1;i<=m;++i)
add(qr(),qr());
db l=-1e7,r=1e7;
while(l<=r){
mid=(l+r)/2;
if(check())r=mid-cha;
else l=mid+cha;
}printf("%.8lf\n",l);
return 0;
}

[HNOI2009]最小圈 (二分答案+负环)的更多相关文章

  1. BZOJ 1486: [HNOI2009]最小圈( 二分答案 + dfs判负圈 )

    二分答案m, 然后全部边权减掉m, 假如存在负圈, 那么说明有平均值更小的圈存在. 负圈用dfs判断. ------------------------------------------------ ...

  2. bzoj 1486: [HNOI2009]最小圈 dfs求负环

    1486: [HNOI2009]最小圈 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 1022  Solved: 487[Submit][Status] ...

  3. 递归型SPFA+二分答案 || 负环 || BZOJ 4773

    题解: 基本思路是二分答案,每次用Dfs型SPFA验证该答案是否合法. 一点细节我注释在代码里了. 代码: #include<cstdio> #include<cstring> ...

  4. [HNOI2009]最小圈 分数规划 spfa判负环

    [HNOI2009]最小圈 分数规划 spfa判负环 题面 思路难,代码简单. 题目求圈上最小平均值,问题可看为一个0/1规划问题,每个边有\(a[i],b[i]\)两个属性,\(a[i]=w(u,v ...

  5. BZOJ_1486_[HNOI2009]最小圈_01分数规划

    BZOJ_1486_[HNOI2009]最小圈_01分数规划 Description Input Output Sample Input 4 5 1 2 5 2 3 5 3 1 5 2 4 3 4 1 ...

  6. bzoj千题计划227:bzoj1486: [HNOI2009]最小圈

    http://www.lydsy.com/JudgeOnline/problem.php?id=1486 二分答案 dfs版spfa判负环 #include<queue> #include ...

  7. 【BZOJ1486】[HNOI2009]最小圈 分数规划

    [BZOJ1486][HNOI2009]最小圈 Description Input Output Sample Input 4 5 1 2 5 2 3 5 3 1 5 2 4 3 4 1 3 Samp ...

  8. BZOJ1486 HNOI2009 最小圈 【01分数规划】

    BZOJ1486 HNOI2009 最小圈 Description 应该算是01分数规划的裸板题了吧..但是第一次写还是遇到了一些困难,vis数组不清零之类的 假设一个答案成立,那么一定可以找到一个环 ...

  9. 【算法】01分数规划 --- HNOI2009最小圈 & APIO2017商旅 & SDOI2017新生舞会

    01分数规划:通常的问法是:在一张有 \(n\) 个点,\(m\) 条边的有向图中,每一条边均有其价值 \(v\) 与其代价 \(w\):求在图中的一个环使得这个环上所有的路径的权值和与代价和的比率最 ...

随机推荐

  1. codeforces 1051 D. Bicolorings (DP)

    D. Bicolorings time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...

  2. Ubuntu 16.04安装Eclipse

    此篇为http://www.cnblogs.com/EasonJim/p/7139275.html的分支页. 前提:必须正确安装JDK和Tomcat. 下载: https://www.eclipse. ...

  3. 自学Linux Shell18.3-sed实用工具

    点击返回 自学Linux命令行与Shell脚本之路 18.3-sed实用工具 1. 加倍行间距 命令格式: .......

  4. CF1073E Segment Sum 解题报告

    CF1073E Segment Sum 题意翻译 给定\(K,L,R\),求\(L~R\)之间最多不包含超过\(K\)个数码的数的和. \(K\le 10,L,R\le 10^{18}\) 数位dp ...

  5. 洛谷 P3237 [HNOI2014]米特运输 解题报告

    P3237 [HNOI2014]米特运输 题目描述 米特是\(D\)星球上一种非常神秘的物质,蕴含着巨大的能量.在以米特为主要能源的D星上,这种米特能源的运输和储存一直是一个大问题. \(D\)星上有 ...

  6. P1186 玛丽卡 删边最短路最大值

    反正蛮水的一道题. 胡雨菲一句话让我的代码减少了10行还A了,之前的是个错的. 思路:先求出最短路,然后依次删去最短路上的每一条边,跑最短路求最大值. 关于删边:我的想法是当作链表删除,把last的n ...

  7. 内存分布图,errno

    输出错误,errno是默认的全局变量 错误处理函数: 错误号:errno perror函数:        void perror(const char *s); strerror函数:        ...

  8. zookeeper安装和使用(Windows环境)

    zookeeper安装和使用(Windows环境) 2017年11月27日 10:36:07 董昊炘的博客 阅读数:14785 标签: zookeeperwindows   zookeeper 一.简 ...

  9. laravel/lumen 的构造函数需要注意的地方

    比如 lumen,ConsoleServiceProvider 里面的 register 做了下面的处理: \Laravel\Lumen\Console\ConsoleServiceProvider: ...

  10. 线程优先级.Priority()

    线程对象.Priority(),线程优先级1-10,10优先级最高.此功能比较鸡肋,不起作用.了解即可 以下案例:循环输出加减乘除,除优先级最高 //MyThread线程 class MyThread ...