题目链接:https://cn.vjudge.net/contest/66569#problem/A

代码:

vis数组代表是否还有用,首先初始化为0,首先第一个点入队列,标记为1,然后刚入队列的时候,取消标记,如果经过判断之后还有用,就再标记。然后再就是出发点的路径,因为是从起始点开始走,所以从1-》1这个路径的权值就应该初始化为0.然后再就是对取最短路的判断,如果某一路径上找到了权重更短的路径,更改值,然后判断一下是否在队列中,如果没有,入队列,标记一下。

#include<iostream>

#include<string>

#include<cstring>

#include<iomanip>

#include<cmath>

#include<vector>

#include<queue>

using namespace std;

# define maxn 2000+10

# define inf 0x3f3f3f3f

int vis[maxn];

int path[maxn];

int a[maxn][maxn];

vector<pair<int,int > >wakaka[maxn];

queue<int >q;

int spfa(int t1,int t2)

{

    memset(vis,0,sizeof(vis));

    for(int i=1; i<=maxn; i++)

    {

        path[i]=inf;

    }

    q.push( t1);

    vis[t1]=1;

    path[t1]=0;

    while(!q.empty())

    {

        int top=q.front();

        q.pop();

        vis[top]=0;

        int len=wakaka[top].size();

        for(int i=0; i<len; i++)

        {

            int temp=wakaka[top][i].first;

            if(path[temp]>path[top]+wakaka[top][i].second)//这个地方比较的是目的地的已经存过的值和新的路径存过的值。

            {

                path[temp]=path[top]+wakaka[top][i].second;

                if(vis[temp]==0)

                {

                    vis[temp]=1;

                    q.push(temp);

                }

            }

        }

    }

    return path[t2];

}

int main()

{

    int t,n;

    cin>>t>>n;

    for(int i=1; i<=t; i++)

    {

        int u,v,w;

        cin>>u>>v>>w;

        if(w>a[u][v])

            wakaka[u].push_back(make_pair(v,w));

        wakaka[v].push_back(make_pair(u,w));

    }

    int t1=spfa(1,n);

    cout<<t1<<endl;

    return 0;

}

分割线----------------------------------------------------------------

最近做了点最短路的题,总结一下。

1,一定要注意最短路操作的是有向图还是无向图,虽然样例可能过,但是ac基本是不可能的。

2,注意打上标记数组,虽然对结果不会有太大的影响,如果数据量大起来的话,如果不打标记数组,队列会出现很多已经出现过的操作。

spfa算法----最短路的更多相关文章

  1. 六度分离(floyd算法,SPFA算法,最短路—Dijkstra算法)

    Time Limit : 5000/1000ms (Java/Other)   Memory Limit : 32768/32768K (Java/Other) Total Submission(s) ...

  2. 用scheme语言实现SPFA算法(单源最短路)

    最近自己陷入了很长时间的学习和思考之中,突然发现好久没有更新博文了,于是便想更新一篇. 这篇文章是我之前程序设计语言课作业中一段代码,用scheme语言实现单源最段路算法.当时的我,花了一整天时间,学 ...

  3. 2018/1/28 每日一学 单源最短路的SPFA算法以及其他三大最短路算法比较总结

    刚刚AC的pj普及组第四题就是一种单源最短路. 我们知道当一个图存在负权边时像Dijkstra等算法便无法实现: 而Bellman-Ford算法的复杂度又过高O(V*E),SPFA算法便派上用场了. ...

  4. 最短路之SPFA算法

    部分来自:http://blog.csdn.net/juststeps/article/details/8772755 求最短路径的算法有许多种,除了排序外,恐怕是OI界中解决同一类问题算法最多的了. ...

  5. 图论-单源最短路-SPFA算法

    有关概念: 最短路问题:若在图中的每一条边都有对应的权值,求从一点到另一点之间权值和最小的路径 SPFA算法的功能是求固定起点到图中其余各点的的最短路(单源最短路径) 约定:图中不存在负权环,用邻接表 ...

  6. 图论——最短路:Floyd,Dijkstra,Bellman-Ford,SPFA算法及最小环问题

    一.Floyd算法 用于计算任意两个节点之间的最短路径. 参考了five20的博客 Floyd算法的基本思想如下:从任意节点A到任意节点B的最短路径不外乎2种可能,1是直接从A到B,2是从A经过若干个 ...

  7. Bellman-ford算法、SPFA算法求解最短路模板

    Bellman-ford 算法适用于含有负权边的最短路求解,复杂度是O( VE ),其原理是依次对每条边进行松弛操作,重复这个操作E-1次后则一定得到最短路,如果还能继续松弛,则有负环.这是因为最长的 ...

  8. [板子]SPFA算法+链式前向星实现最短路及负权最短路

    参考:https://blog.csdn.net/xunalove/article/details/70045815 有关SPFA的介绍就掠过了吧,不是很赞同一些博主说是国内某人最先提出来,Bellm ...

  9. 图论算法(三) 最短路SPFA算法

    我可能要退役了…… 退役之前,写一篇和我一样悲惨的算法:SPFA 最短路算法(二)SPFA算法 Part 1:SPFA算法是什么 其实呢,SPFA算法只是在天朝大陆OIers的称呼,它的正统名字叫做: ...

随机推荐

  1. BZOJ1468Tree——点分治

    题目描述 给你一棵TREE,以及这棵树上边的距离.问有多少对点它们两者间的距离小于等于K 输入 N(n<=40000) 接下来n-1行边描述管道,按照题目中写的输入 接下来是k 输出 一行,有多 ...

  2. day5 continue 和 break的区别

    # continue num = 1 while num <=10: num += 1 if num == 3: continue print(num) # continue 表示跳出本次循环后 ...

  3. ra (数论 , 莫比乌斯反演 , 整点统计)

    题意 求 \[\displaystyle \sum_{i=1}^{n} \sum_{j=1}^{n} [\mathrm{lcm} (i,j) > n] \pmod {10^9 + 7}\] . ...

  4. android sqlite批量插入数据速度解决方案

    转自 http://hi.baidu.com/hfutonline/blog/item/62b1e4de8bdf4b2e5882dd28.html 最近在做android项目的时候遇到一个问题,应用程 ...

  5. SDL2.0 VLC ubuntu安装和黑屏问题

    开发环境安装: 1,执行:"sudo apt-get build-dep libsdl1.2",确定依赖库都装全了. sdl2.0没有正式发布到ubuntu,使用下面方法安装: h ...

  6. ASP: Response 对象 错误 'ASP 0251 : 80004005' 解决办法

    Response 对象 错误 'ASP 0251 : 80004005' 超过响应缓冲区限制 这种情况一般是因为需要输出的网页内容太大了,由于asp在输入内容到客户的浏览器上之前,会把需要输出的全部内 ...

  7. 和我一起使用webpack构建react项目

    第一步:初始化项目并创建package.json文件 第二步:创建webpack.config.js文件,并写入配置. 第三步:安装webpack以及创建es6语法环境,要将html作为模板文件解析的 ...

  8. codeblocks 支持多个exe同时执行

    如果看总时间,没什么用,因为总资源是一样的. 但是可以做到:吃饭前,执行多个程序,吃完饭,所有程序执行完.

  9. 对程序进行package封装

    一.package包 格式:package 代码必须写在源代码文件的第一句, 约定俗成使用公司域名的倒写,之后再加其他. for example: package cn.chuanzhiboke.te ...

  10. PHP依赖倒置和控制反转

    判断代码的好坏,我们有自己的标准:高内聚,低耦合.为了解决这一问题,php中有许多优秀的设计模式,比如工厂模式,单例模式. 而在代码中体现出来的设计模式,就如依赖注入和控制反转. 那什么是依赖注入? ...