安装scrapy-redis

pip install scrapy-redis

从GitHub 上拷贝源码:

clone github scrapy-redis源码文件     git clone https://github.com/rolando/scrapy-redis.git

scrapy-redis的工作流程

Scrapy_redis之domz  例子分析

1.domz爬虫:

 2.配置中:

3.执行domz的爬虫,会发现redis中多了一下三个键

redispipeline中仅仅实现了item数据存储到redis的过程,我们可以新建一个pipeline(或者修改默认的ExamplePipeline),可以让数据存储到任意地方。

 scrapy-redis 的源码分析

1.Scrapy_redis之RedisPipeline

2.Scrapy_redis之RFPDupeFilter

3.Scrapy_redis之Scheduler

domz相比于之前的spider多了持久化request去重的功能,setting中的配置都是可以自己设定的,

意味着我们的可以重写去重和调度器的方法,包括是否要把数据存储到redis(pipeline)

1.Scrapy_redis之RedisSpider

2. Scrapy_redis之RedisCrawlSpider

scrapy-redis 配置:

在爬虫项目的settings.py文件中,可以做一下配置

# ####################### redis配置文件 #######################
REDIS_HOST = '192.168.11.81' # 主机名
REDIS_PORT = 6379 # 端口
# REDIS_URL = 'redis://user:pass@hostname:9001' # 连接URL(优先于以上配置)
# REDIS_PARAMS = {} # Redis连接参数 默认:REDIS_PARAMS = {'socket_timeout': 30,'socket_connect_timeout': 30,'retry_on_timeout': True,'encoding': REDIS_ENCODING,})
# REDIS_PARAMS['redis_cls'] = 'myproject.RedisClient' # 指定连接Redis的Python模块 默认:redis.StrictRedis
REDIS_ENCODING = "utf-8" # redis编码类型 默认:'utf-8' # df
DUPEFILTER_CLASS = "scrapy_redis.dupefilter.RFPDupeFilter" # 也可以自定义自己的去重规则 from scrapy_redis.scheduler import Scheduler
SCHEDULER = "scrapy_redis.scheduler.Scheduler" # 调度器 from scrapy_redis.queue import PriorityQueue
from scrapy_redis import picklecompat
SCHEDULER_QUEUE_CLASS = 'scrapy_redis.queue.PriorityQueue' # 默认使用优先级队列(默认),其他:PriorityQueue(有序集合),FifoQueue(列表)、LifoQueue(列表)
SCHEDULER_QUEUE_KEY = '%(spider)s:requests' # 调度器中请求存放在redis中的key
SCHEDULER_SERIALIZER = "scrapy_redis.picklecompat" # 对保存到redis中的数据进行序列化,默认使用pickle
SCHEDULER_PERSIST = True # 是否在关闭时候保留原来的调度器和去重记录,True=保留,False=清空
SCHEDULER_FLUSH_ON_START = False # 是否在开始之前清空 调度器和去重记录,True=清空,False=不清空
SCHEDULER_IDLE_BEFORE_CLOSE = 10 # 去调度器中获取数据时,如果为空,最多等待时间(最后没数据,未获取到)。
SCHEDULER_DUPEFILTER_KEY = '%(spider)s:dupefilter' # 去重规则,在redis中保存时对应的key
SCHEDULER_DUPEFILTER_CLASS = 'scrapy_redis.dupefilter.RFPDupeFilter' # 去重规则对应处理的类 from scrapy_redis.pipelines import RedisPipeline ITEM_PIPELINES = {
'scrapy_redis.pipelines.RedisPipeline': 300,
}
REDIS_ITEMS_KEY = '%(spider)s:items'
REDIS_ITEMS_SERIALIZER = 'json.dumps'

Crontab爬虫定时执行

Scrapy-redis 中的知识总结

request对象什么时候入队

  • dont_filter = True ,构造请求的时候,把dont_filter置为True,该url会被反复抓取(url地址对应的内容会更新的情况)

  • 一个全新的url地址被抓到的时候,构造request请求

  • url地址在start_urls中的时候,会入队,不管之前是否请求过

    • 构造start_url地址的请求时候,dont_filter = True

  def enqueue_request(self, request):
   if not request.dont_filter and self.df.request_seen(request):
       # dont_filter=False Ture True request指纹已经存在 #不会入队
       # dont_filter=False Ture False request指纹已经存在 全新的url #会入队
       # dont_filter=Ture False #会入队
       self.df.log(request, self.spider)
       return False
   self.queue.push(request) #入队
   return True

scrapy_redis去重方法

  • 使用sha1加密request得到指纹

  • 把指纹存在redis的集合中

  • 下一次新来一个request,同样的方式生成指纹,判断指纹是否存在reids的集合中

生成指纹

  fp = hashlib.sha1()
fp.update(to_bytes(request.method))  #请求方法
fp.update(to_bytes(canonicalize_url(request.url))) #url
fp.update(request.body or b'')  #请求体
return fp.hexdigest()

判断数据是否存在redis的集合中,不存在插入

added = self.server.sadd(self.key, fp)
return added != 0

scrapy-redis(一)的更多相关文章

  1. 基于Python,scrapy,redis的分布式爬虫实现框架

    原文  http://www.xgezhang.com/python_scrapy_redis_crawler.html 爬虫技术,无论是在学术领域,还是在工程领域,都扮演者非常重要的角色.相比于其他 ...

  2. Scrapy+redis实现分布式爬虫

    概述 什么是分布式爬虫 需要搭建一个由n台电脑组成的机群,然后在每一台电脑中执行同一组程序,让其对同一网络资源进行联合且分布的数据爬取. 原生Scrapy无法实现分布式的原因 原生Scrapy中调度器 ...

  3. scrapy+redis去重实现增量抓取

    class ProjectnameDownloaderMiddleware(object): # Not all methods need to be defined. If a method is ...

  4. 爬虫--scrapy+redis分布式爬取58同城北京全站租房数据

    作业需求: 1.基于Spider或者CrawlSpider进行租房信息的爬取 2.本机搭建分布式环境对租房信息进行爬取 3.搭建多台机器的分布式环境,多台机器同时进行租房数据爬取 建议:用Pychar ...

  5. Redis与Scrapy

    Redis与Scrapy Redis与Scrapy Redis is an open source, BSD licensed, advanced key-value cache and store. ...

  6. python - scrapy 爬虫框架 ( redis去重 )

    1.  使用内置,并加以修改 ( 自定义 redis 存储的 keys ) settings 配置 # ############### scrapy redis连接 ################# ...

  7. Python分布式爬虫打造搜索引擎完整版-基于Scrapy、Redis、elasticsearch和django打造一个完整的搜索引擎网站

    Python分布式爬虫打造搜索引擎 基于Scrapy.Redis.elasticsearch和django打造一个完整的搜索引擎网站 https://github.com/mtianyan/Artic ...

  8. scrapy简单分布式爬虫

    经过一段时间的折腾,终于整明白scrapy分布式是怎么个搞法了,特记录一点心得. 虽然scrapy能做的事情很多,但是要做到大规模的分布式应用则捉襟见肘.有能人改变了scrapy的队列调度,将起始的网 ...

  9. 第三百六十五节,Python分布式爬虫打造搜索引擎Scrapy精讲—elasticsearch(搜索引擎)的基本查询

    第三百六十五节,Python分布式爬虫打造搜索引擎Scrapy精讲—elasticsearch(搜索引擎)的基本查询 1.elasticsearch(搜索引擎)的查询 elasticsearch是功能 ...

  10. 四十四 Python分布式爬虫打造搜索引擎Scrapy精讲—elasticsearch(搜索引擎)的基本查询

    1.elasticsearch(搜索引擎)的查询 elasticsearch是功能非常强大的搜索引擎,使用它的目的就是为了快速的查询到需要的数据 查询分类: 基本查询:使用elasticsearch内 ...

随机推荐

  1. 【示例】Spring Quartz入门

    JAVA 针对定时任务,有 Timer,Scheduler, Quartz 等几种实现方式,其中最常用的应该就是 Quartz 了. 一. Quartz的基本概念 在开始之前,我们必须了解以下的几个基 ...

  2. hash进阶:使用字符串hash乱搞的姿势

    前言 此文主要介绍hash的各种乱搞方法,hash入门请参照我之前这篇文章 不好意思hash真的可以为所欲为 在开头先放一下题表(其实就是我题解中的hash题目qwq) 查询子串hash值 必备的入门 ...

  3. postgreSql——时区问题

    timestamptz.timestamp SELECT ts AT TIME ZONE 'UTC' FROM ( VALUES (timestamptz '2012-03-05 17:00:00+0 ...

  4. jQuery 知识点总结

    jQuery 是一个“写的更少,但做的更多”的轻量级JavaScript 库.对于网页开发者来说,学会jQuery是必要的.因为它让你了解业界最通用的技术,为将来学习更高级的库打下基础,并且确实可以很 ...

  5. React创建组件的三种方式及其区别

    内容转载于http://www.cnblogs.com/wonyun/p/5930333.html React推出后,出于不同的原因先后出现三种定义react组件的方式,殊途同归; 具体的三种方式: ...

  6. mark mem

    韦达定理 http://baike.baidu.com/link?url=M45ozZEnQ4BtKD7l22WWgQuGnmDYV7TFynQcPEO2Tt8leYGhyEa1flt-RM34NG4 ...

  7. 【BZOJ】1875: [SDOI2009]HH去散步

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1875 注意的是路径不可以重复,所以这题把边看成点.每一条无向边拆成两条有向边. 令${F[ ...

  8. Java中的long与double的区别

    1.long与double在java中本身都是用64位存储的,但是他们的存储方式不同,导致double可储存的范围比long大很多 2.long可以准确存储19位数字,而double只能准备存储16位 ...

  9. 《深入理解JVM虚拟机》读书笔记

    前言:<深入理解JVM虚拟机>是JAVA的经典著作之一,因为内容更偏向底层,所以之前一直没有好好的阅读过.最近因为刚好有空,又有了新目标.所以打算和<构架师的12项修炼>一起看 ...

  10. ros 节点关闭后重启

    加入参数 respawn="true"