题目传送:Killer Names

Problem Description
> Galen Marek, codenamed Starkiller, was a male Human apprentice of the Sith Lord Darth Vader. A powerful Force-user who lived during the era of the Galactic Empire, Marek originated from the Wookiee home planet of Kashyyyk as the sole offspring of two Jedi Knights—Mallie and Kento Marek—who deserted the Jedi Order during the Clone Wars. Following the death of his mother, the young Marek's father was killed in battle by Darth Vader. Though only a child, Marek possessed an exceptionally strong connection to the Force that the Dark Lord of the Sith sought to exploit.
>
> When Marek died in 2 BBY, shortly after the formation of the Alliance, Vader endeavored to recreate his disciple by utilizing the cloning technologies of the planet Kamino. The accelerated cloning process—an enhanced version of the Kaminoan method which allowed for a rapid growth rate within its subjects—was initially imperfect and many clones were too unstable to take Marek's place as the Dark Lord's new apprentice. After months of failure, one particular clone impressed Vader enough for him to hope that this version might become the first success. But as with the others, he inherited Marek's power and skills at the cost of receiving his emotions as well, a side effect of memory flashes used in the training process.
>
> — Wookieepedia

Darth Vader is finally able to stably clone the most powerful soilder in the galaxy: the Starkiller. It is the time of the final strike to destroy the Jedi remnants hidden in every corner of the galaxy.

However, as the clone army is growing, giving them names becomes a trouble. A clone of Starkiller will be given a two-word name, a first name and a last name. Both the first name and the last name have exactly n characters, while each character is chosen from an alphabet of size m. It appears that there are m2n possible names to be used.

Though the clone process succeeded, the moods of Starkiller clones seem not quite stable. Once an unsatisfactory name is given, a clone will become unstable and will try to fight against his own master. A name is safe if and only if no character appears in both the first name and the last name.

Since no two clones can share a name, Darth Vader would like to know the maximum number of clones he is able to create.

 
Input
The First line of the input contains an integer T (T≤10), denoting the number of test cases.

Each test case contains two integers n and m (1≤n,m≤2000).

 
Output
For each test case, output one line containing the maximum number of clones Vader can create.

Output the answer  mod 109+7

 
Sample Input
2
3 2
2 3
 
Sample Output
2
18
 
以下题意和题解摘自此博客。

题意:有m个字符,由你来取名字,姓和名。一个字符只能出现在姓或者名,或者不出现。姓和名的长度为n。求可以取多少个不重复的名字。

题解:一开始的思路:姓里面放i个字符,就是i^n;名里面还可以选m-i个字符,就是(m-i)^n;再乘上组合数,答案就是sum(C(m,i)*i^n*(m-i)^n),i∈[1,m]。

上面那个就是公式,写几个后会发现,姓里面有重复计算的部分,要减去这一部分。

dp[i]:m里面取i个放在姓中,这i个都必须出现(i^n包含了出现小于i个字符的情况)。

比如dp[3]=3^n-C(3,2)*(2^n-C(2,1)*1^n)-C(3,1)*1^n。这里好好理解一下,是去重)。

//即可取三个字符的情况 - 可取两个字符的情况 - 可取一个字符的情况,只剩下必须用三个字符的情况

上式转化就是:dp[3]=3^n-C(3,2)*dp[2]-C(3,1)*dp[1]。

所以有递推方程:

dp[i]=i^n-C(i,i-1)*dp[i-1]-C(i,i-2)*dp[i-2]-...-C(i,1)*dp[1]

答案就是sum(C(m,i)*dp[i]*(m-i)^n),i∈[1,m](组合数*姓*名)。

  1. #include<iostream>
  2. #include<cstdio>
  3. #include<cmath>
  4. #include<cstring>
  5. #include<string>
  6. using namespace std;
  7. const int mod = 1e9+;
  8. const int maxn=;
  9. long long dp[maxn];
  10. long long c[maxn][maxn];
  11. void init()
  12. {
  13. memset(c,,sizeof(c));
  14. for(int i=;i<maxn;i++)
  15. {
  16. c[i][]=;c[i][i]=;
  17. for(int j=;j<i;j++)//杨辉三角的应用
  18. c[i][j]=(c[i-][j-]+c[i-][j])%mod;
  19. }
  20. }
  21. long long quickmod(long long a,long long b,long long m)
  22. {
  23. long long ans = ;
  24. while(b)//用一个循环从右到左遍历b的所有二进制位
  25. {
  26. if(b&)//判断此时b[i]的二进制位是否为1
  27. {
  28. ans = (ans*a)%m;//乘到结果上,这里a是a^(2^i)%m
  29. b--;//把该为变0
  30. }
  31. b/=;
  32. a = a*a%m;
  33. }
  34. return ans;
  35. }
  36. int main()
  37. {
  38. int T,n,m;
  39. scanf("%d",&T);
  40. init();
  41. while(T--)
  42. {
  43. scanf("%d%d",&n,&m);
  44. memset(dp,,sizeof(dp));
  45. //求dp
  46. for(int i=;i<=m;i++)
  47. {
  48. dp[i]=quickmod(i,n,mod);
  49. for(int j=;j<i;j++)
  50. {
  51. dp[i]=((dp[i]-c[i][j]*dp[j])%mod+mod)%mod;//如果只是单纯%mod会WA
  52. }
  53. }
  54. //求结果
  55. long long ans=,tmp;
  56. for(int i=;i<=m;i++)
  57. {
  58. tmp=(c[m][i]*dp[i]/*姓部分*/)%mod;
  59. ans+=(tmp*quickmod(m-i,n,mod)/*名部分*/)%mod;
  60. ans%=mod;
  61. }
  62. printf("%lld\n",ans);
  63. }
  64. return ;
  65. }

HDU 6143 17多校8 Killer Names(组合数学)的更多相关文章

  1. HDU 6140 17多校8 Hybrid Crystals(思维题)

    题目传送: Hybrid Crystals Problem Description > Kyber crystals, also called the living crystal or sim ...

  2. HDU 6045 17多校2 Is Derek lying?

    题目传送:http://acm.hdu.edu.cn/showproblem.php?pid=6045 Time Limit: 3000/1000 MS (Java/Others)    Memory ...

  3. HDU 6124 17多校7 Euler theorem(简单思维题)

    Problem Description HazelFan is given two positive integers a,b, and he wants to calculate amodb. Bu ...

  4. HDU 3130 17多校7 Kolakoski(思维简单)

    Problem Description This is Kolakosiki sequence: 1,2,2,1,1,2,1,2,2,1,2,2,1,1,2,1,1,2,2,1……. This seq ...

  5. HDU 6038 17多校1 Function(找循环节/环)

    Problem Description You are given a permutation a from 0 to n−1 and a permutation b from 0 to m−1. D ...

  6. HDU 6034 17多校1 Balala Power!(思维 排序)

    Problem Description Talented Mr.Tang has n strings consisting of only lower case characters. He want ...

  7. HDU 6103 17多校6 Kirinriki(双指针维护)

    Problem Description We define the distance of two strings A and B with same length n isdisA,B=∑i=0n− ...

  8. HDU 6098 17多校6 Inversion(思维+优化)

    Problem Description Give an array A, the index starts from 1.Now we want to know Bi=maxi∤jAj , i≥2. ...

  9. HDU 6106 17多校6 Classes(容斥简单题)

    Problem Description The school set up three elective courses, assuming that these courses are A, B, ...

随机推荐

  1. js操作字符串的常用方法

    使用 substring()或者slice() 函数:split() 功能:使用一个指定的分隔符把一个字符串分割存储到数组 例子: str=”jpg|bmp|gif|ico|png”; arr=the ...

  2. 如何使a标签打开新页面并阻止刷新当前页面

    错误: HTML中,使用href属性时,当前页面和新页面均跳转到URL指定的页面,即当前页面也刷新: <li id='goToBack'><a href='**.action' ta ...

  3. pandas dataframe 过滤——apply最灵活!!!

    按照某特定string字段长度过滤: import pandas as pd df = pd.read_csv('filex.csv') df['A'] = df['A'].astype('str') ...

  4. cpu占用过高排查

    top命令是Linux下常用的性能分析工具,能够实时显示系统中各个进程的资源占用状况,类似于Windows的任务管理器 内容解释: PID:进程的ID USER:进程所有者 PR:进程的优先级别,越小 ...

  5. MVC的前端和后端的Model Binding

    1.前端提交JSON 字符串 {"id":13,"title":"这里是标题33","day":"2018-8 ...

  6. Eclipse Mars-Ant无法使用jre1.6的问题

    https://www.jianshu.com/p/24b9517d7f43 Eclipse 升级到Mars 4.5.1版本后,老项目使用jdk1.6,通过ant编译jar时,会遇到如下问题: 使用j ...

  7. Android 之常用布局

    LinearLayout 线性布局. android:orientation="horizontal" 制定线性布局的排列方式 水平 horizontal 垂直 vertical ...

  8. window7下载安装桌面版ubuntu

    首先需要下载VMware Workstation   下载地址:http://pan.baidu.com/s/1qXS0rhi  秘钥:bbpn 我的环境是ubuntu-14.10-desktop-a ...

  9. 【Jmeter基础知识】Jmeter的三种参数化方式

    JMeter的三种参数化方式包括: 1.用户参数 2.函数助手 3.CSV Data Set Config 一.用户参数 位置:添加-前置处理器-用户参数 操作:可添加多个变量或者参数 二.函数助手 ...

  10. 1-2Controller之Session

    laravel5.5版本. 视频教程是慕课网中的:轻松学会Laravel-表单篇 1-2 /*session简介: 1.由于HTTP协议是无状态(Stateless)的,所以session提供一种保存 ...