• Binary Tree : It is a tree data structure in which each node has at most two children. As such there is no relation between a parent and its left and right descendants. Hence they are unordered.
    • Binary Search Tree : These are ordered binary trees with a recursive relation left<root<right which is followed at every node. Its due to this rule that helps in faster search,insertion and deletion. The best case is achieved when the tree is balanced.

      Note: Not all BSTs are self balancing.

    • B-Tree : It
      is a generalization of a BST in that a node can have more than two
      children. These are self balancing and hence the average and worst
      complexities is logarithmic.We opt for these when the data is too huge
      to fit in main memory.  These structures are used in database indexing
      and help in faster operations on disk.
    • B+ Tree : In
      these copies of the keys are stored in the internal nodes; the keys and
      records are stored in leaves; in addition, a leaf node may include a
      pointer to the next leaf node to speed sequential access. These are used
      in File systems, DBMS etc.

What is the difference between a binary tree, a binary search tree, a B tree and a B+ tree?的更多相关文章

  1. 将百分制转换为5分制的算法 Binary Search Tree ordered binary tree sorted binary tree Huffman Tree

    1.二叉搜索树:去一个陌生的城市问路到目的地: for each node, all elements in its left subtree are less-or-equal to the nod ...

  2. (Tree)94.Binary Tree Inorder Traversal

    /** * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left; * Tre ...

  3. [Leetcode][JAVA] Minimum Depth of Binary Tree && Balanced Binary Tree && Maximum Depth of Binary Tree

    Minimum Depth of Binary Tree Given a binary tree, find its minimum depth. The minimum depth is the n ...

  4. 33. Minimum Depth of Binary Tree && Balanced Binary Tree && Maximum Depth of Binary Tree

    Minimum Depth of Binary Tree OJ: https://oj.leetcode.com/problems/minimum-depth-of-binary-tree/ Give ...

  5. 39. Recover Binary Search Tree && Validate Binary Search Tree

    Recover Binary Search Tree OJ: https://oj.leetcode.com/problems/recover-binary-search-tree/ Two elem ...

  6. [LeetCode] Encode N-ary Tree to Binary Tree 将N叉树编码为二叉树

    Design an algorithm to encode an N-ary tree into a binary tree and decode the binary tree to get the ...

  7. [Algorithm] Check if a binary tree is binary search tree or not

    What is Binary Search Tree (BST) A binary tree in which for each node, value of all the nodes in lef ...

  8. [leetcode tree]107. Binary Tree Level Order Traversal II

    Given a binary tree, return the bottom-up level order traversal of its nodes' values. (ie, from left ...

  9. [leetcode tree]103. Binary Tree Zigzag Level Order Traversal

    Given a binary tree, return the zigzag level order traversal of its nodes' values. (ie, from left to ...

随机推荐

  1. javascript技术大全

    这更像是一篇为自己而写的文章,没有过多的解释,sorray. 关于:return function fn(num){ var a = num; if(a>1){ a = num + 1; ret ...

  2. SQL Server中一个隐性的IO性能杀手-Forwarded record

    简介     最近在一个客户那里注意到一个计数器很高(Forwarded Records/Sec),伴随着间歇性的磁盘等待队列的波动.本篇文章分享什么是forwarded record,并从原理上谈一 ...

  3. 【WP开发】正确理解页面缓存

    注:本文内容面向Runtime App. 在新建项目后,细心观察,你会发现在App类中有以下代码: // TODO: 将此值更改为适合您的应用程序的缓存大小 rootFrame.CacheSize = ...

  4. 面试准备 - C# 版本的树状数组

    树状数组 计算 任意连续N个值的和的时间复杂度为Log(n) 修改也是Log(n) 而普通数组修改是O(1) 计算和是O(n) 具体定义可以看这里:http://zh.wikipedia.org/zh ...

  5. Spring MVC 学习总结(四)——视图与综合示例

    一.表单标签库 1.1.简介 从Spring2.0起就提供了一组全面的自动数据绑定标签来处理表单元素.生成的标签兼容HTML 4.01与XHTML 1.0.表单标签库中包含了可以用在JSP页面中渲染H ...

  6. 批处理:Windows主机通过FTP下载远程Linux主机上文件

    问题:在Windows上怎么写个批处理把多个文件FTP依次下载到本地某个目录. 批处理脚本示例: @echo off title Download db files. Don't close it!! ...

  7. 可视化工具gephi源码探秘(二)---导入netbeans

    在上篇<可视化工具gephi源码探秘(一)>中主要介绍了如何将gephi的源码导入myeclipse中遇到的一些问题,此篇接着上篇而来,主要讲解当下通过myeclipse导入gephi源码 ...

  8. 语义化HTML:p、h1-6、q、blockquote、hr、address、code、pre、var、cite、dfn和samp

    一.元素语义 p标签 W3C草案: The p element represents a paragraph.W3C specification 语义化的 <p>元素 表示:文章中的段落. ...

  9. Android开发中遇到的requestFeature() must be called before adding content异常

    缘起 上一篇博文中讲到了几种实现全屏显示Activity内容的方法.然而实际在实现中发现了一些问题,在本篇博文中进行总结下.首先交代一下开发环境,本人使用的是Android Studio 1.5.1, ...

  10. [译]学习IPython进行交互式计算和数据可视化(四)

    第三章 使用Python进行数字计算 尽管IPython强大的shell和扩展后的控制台能被任何Python程序员使用,但是这个工具最初是科学奖为科学家设计的.它的主要设计目标就是为使用Python进 ...