现在流行用Exterior Caculus, 所以个人觉得Matthews这本书有点过时了。

想学Vector Calculus的话,推荐《Vector Calculus, Linear Algebra, and Differential Forms》,网上有第一版的电子版。虽然出到了第五版,但貌似vector caculus 和differential forms的部分没有什么改动。所以个人觉得用第一版学习vector caculus足以。

-----------------------------------

http://book.douban.com/annotation/36251494/

<<Vector Calculus>>
by Paul C, Matthews

P4

Since the quantity of |b|*cosθ represents the component of the vector b in thedirection of the vector a, the scalar a * b can be thought of as the magnitudeof a multiplied by the component of b in the direction of a

P7

the general form of the equation of a plane is: r * a = constant.

P11

| e1 e2 e3 |
a x b=| a1 a2 a3 |
          | b1 b2 b3 |

v = Ω x r

P24

The equation of a line is: r = a + λu

The second equation of a line is: r x u = b = a x u

----------------------------------------------------

1.4 Scalar triple product ([a, b, c])

The dot and the cross can be interchanged:[a, b, c]≡a * b x c = a x b * c

The vectors a, b and c can be permuted cyclically:a * b x c = b * c x a = c * a x b

The scalar triple product can be written in the form of a determinant:

| a1 a2 a3 |
a * b x c=| b1 b2 b3 |
               | c1 c2 c3 |

If any two of the vectors are equal, the scalar triple product is zero.

--------------------------------------------------------

1.5 Vector triple product     a x (b x c)

a x (b x c) = (a * c)*b - (a * b)*c

(a x b) x c = -(b * c)*a + (c * a)*b

--------------------------------------------------------

1.6 Scalar fields and vector fields

A scalar or vector quantity is said be a field if it is a function of position.

--------------------------------------------------------

2.2.3 Conservative vector fields

A vector field F is said to be conservative if it has the property that the line integral of F around any closed curve C is zero:

An equivalent definition is that F is conservative if the line integral of Falong a curve only depends on the endpoints of the curve, not on the pathtaken by the curve

--------------------------------------------------------

2.3.2

3.1.2 Taylor series in more than one variable

3.2 Gradient of a scalar field

The symbol ∇ can be interpreted as a vector differential operator,where the term operator means that ∇ only has a meaning when it acts on some other quantity.

Theorem 3.1

Suppose that a vector field F is related to a scalar field Φ by F = ∇Φ and ∇ exists everywhere in some region D. Then F is conservative within D.Conversely, if F is conservative, then F can be written as the gradient of a scalar field, F = ∇Φ.

If a vector field F is conservative, the corresponding scalar field Φ which obeys F = ∇Φ is called the potential(势能) for F.

--------------------------------------------------

3.3.2 Laplacian of a scalar field


3.3.2 Laplacian of a scalar field

4.3 The alternating tensor εijk

5.1.1 Conservation of mass for a fluid

6.1 Orthogonal curvilinear coordinates

P100

Suppose a transformation is carried out from a Cartesian coordinate system (x1, x2, x3) to another coordinate system (u1, u2, u3)

e1 =(∂x/∂u1) / h1, h1 = | ∂x/∂u1 |

e2 =(∂x/∂u2) / h2, h2 = | ∂x/∂u2 |

e3 =(∂x/∂u3) / h3, h3 = | ∂x/∂u3 |

dS = h1 * h2 * du1 * du2

dV = h1 * h2 * h3 * du1 * du2 * du3

------------------------------------------------------------------

相关内容在《微积分学教程(第三卷)》(by 菲赫金哥尔茨)里使用Jacobi式阐述的:

16章

$4. 二重积分中的变量变换

603.平面区域的变换

604.例1)(极坐标的例子)

605.曲线坐标中面积的表示法

607.几何推演

609.二重积分中的变量变换

17章 曲面面积,曲面积分

619. 例2 (引入A,B,C)

626 曲面面积的存在及其计算

629 例14)球面极坐标的计算

18章 三重积分及多重积分

$3 三重积分中的变量变换

655. 空间的变换及曲线坐标

656 例1 圆柱坐标,例2球坐标

657 曲线坐标下的体积表示法 (得出曲面坐标下的体积元素)

659 几何推演

661 三重积分中的变量变换

------------------------------------------------------------------

Summary of Chapter 6

The system (u1, u2, u3) is orthogonal if ei * ej = δij.

------------------------------------

7. Cartesian Tensors

7.1 Coordinate transformations

A matrix with this property, that its inverse is equal to its transpose, is said to be orthogonal。

So far we have only considered a two-dimensional rotation of coordinates. Consider now a general three-dimensional rotation. For a position vector x = x1e1 + x2e2 + x3e3,

x' = e'i * x (x在e'i上的投影) = e'i * (e1*x1 + e2*x2 + e3*x3) = e'i * ei*xi

xi = Lji * x'j ..........................(7.6)

7.2 Vectors and scalars

A quantity is a tensor if each of the free suffices transforms according to the rule (7.4).Lij * Lkj = δik

7.3.3 Isotropic tensors

The two tensors δij and εijk have a special property. Their components are the same in all coordinate systems. A tensor with this property is said to be isotropic.

7.4 Physical examples of tensors

7.4.1 Ohm's law

This is why δik is said to be an isotropic tensor: it represents the relationship between two vectors that are always parallel, regardless of their direction.

----------------------------------------------

8 Applications of Vector Calculus

----------------------------------------------

----------------------------------------------

8.5 Fluid mechanics

----------------------------------------------

----------------------------------------------

----------------------------------------------

----------------------------------------------

Example 8.12

Choosing the x-axis to be parallel to the channel walls, the velocity u hasthe form u = (u, 0, 0). As the fluid is incompressible(所有点的速度(沿x轴)相同), ∇u = 0, so ∂u/∂x = 0.

<<Vector Calculus>>笔记的更多相关文章

  1. HTML+CSS笔记 CSS笔记集合

    HTML+CSS笔记 表格,超链接,图片,表单 涉及内容:表格,超链接,图片,表单 HTML+CSS笔记 CSS入门 涉及内容:简介,优势,语法说明,代码注释,CSS样式位置,不同样式优先级,选择器, ...

  2. CSS笔记--选择器

    CSS笔记--选择器 mate的使用 <meta charset="UTF-8"> <title>Document</title> <me ...

  3. HTML+CSS笔记 CSS中级 一些小技巧

    水平居中 行内元素的水平居中 </a></li> <li><a href="#">2</a></li> &l ...

  4. HTML+CSS笔记 CSS中级 颜色&长度值

    颜色值 在网页中的颜色设置是非常重要,有字体颜色(color).背景颜色(background-color).边框颜色(border)等,设置颜色的方法也有很多种: 1.英文命令颜色 语法: p{co ...

  5. HTML+CSS笔记 CSS中级 缩写入门

    盒子模型代码简写 回忆盒模型时外边距(margin).内边距(padding)和边框(border)设置上下左右四个方向的边距是按照顺时针方向设置的:上右下左. 语法: margin:10px 15p ...

  6. HTML+CSS笔记 CSS进阶再续

    CSS的布局模型 清楚了CSS 盒模型的基本概念. 盒模型类型, 我们就可以深入探讨网页布局的基本模型了.布局模型与盒模型一样都是 CSS 最基本. 最核心的概念. 但布局模型是建立在盒模型基础之上, ...

  7. HTML+CSS笔记 CSS进阶续集

    元素分类 在CSS中,html中的标签元素大体被分为三种不同的类型:块状元素.内联元素(又叫行内元素)和内联块状元素. 常用的块状元素有: <div>.<p>.<h1&g ...

  8. HTML+CSS笔记 CSS进阶

    文字排版 字体 我们可以使用css样式为网页中的文字设置字体.字号.颜色等样式属性. 语法: body{font-family:"宋体";} 这里注意不要设置不常用的字体,因为如果 ...

  9. HTML+CSS笔记 CSS入门续集

    继承 CSS的某些样式是具有继承性的,那么什么是继承呢?继承是一种规则,它允许样式不仅应用于某个特定html标签元素,而且应用于其后代(标签). 语法: p{color:red;} <p> ...

  10. HTML+CSS笔记 CSS入门

    简介: </span>年的圣诞节期间,吉多·范罗苏姆为了在阿姆斯特丹打发时间,决心开发一个新的<span>脚本解释程序</span>,作为ABC语言的一种继承. & ...

随机推荐

  1. JAVAWEB学习总结 HTTPSERVLETRESPONSE对象(二)

    一.HttpServletResponse常见应用--生成验证码 1.1.生成随机图片用作验证码 生成图片主要用到了一个BufferedImage类 步骤: 1. 在内存中创建一张图片 2.得到图片 ...

  2. .Net Core + Angular2 环境搭建

    环境搭建: 1)node.js版本>5.0,NPM版本>3.0,TypeScript版本>2.0(全装最新版就好了) 2)安装NTVS 1.2(node tools for vs), ...

  3. OD调试16

    今天还是15的那个程序,但是呢,换一种方法去掉NAG窗口 用OD载入,暂停,查看调用的堆栈 先看最后一个    查看调用,下断点 往上看看,找到入口的地方,设下断.点,重载,运行,单步 通过单步发现 ...

  4. removeClass color-*

    bootstrap推出一系列的class名称,例如col-md-*.btn-*等等,有时候就会有想要将这一类className删掉的冲动~ 那咋样才能妥妥的实现呢?你是不是已经看到下面答案了,诶诶.. ...

  5. LVM逻辑卷的创建及使用

    在上一篇随笔里面 LVM逻辑卷基本概念及LVM的工作原理,详细的讲解了Linux的动态磁盘管理LVM逻辑卷的基本概念以及LVM的工作原理,包括LVM中最重要的四个基本点(PE.PV.VG以及LV),这 ...

  6. cocos2dx 之 android java 与 c++ 互相调用 代码(以百度定位为例子)

    在作cocosdx项目移植到android上时,预见各种头痛问题,今天首先就说说如何在 java 中调用c++ 代码. 这里就用百度定位为例吧,也是我项目中的一小块内容.首先,先百度一下 “百度定位s ...

  7. Xshell访问虚拟机内Linux

    这段时间在家,需要用到Linux,身边的电脑硬盘很小,装双系统用的频率也不高还浪费磁盘空间,还是使用虚拟机,通过Xshell管理虚拟机内Ubuntu还是比较方便的.很早之前学习hadoop的时候就是用 ...

  8. LintCode Palindrome Partitioning II

    Given a string s, cut s into some substrings such that every substring is a palindrome. Return the m ...

  9. <随便写写>

    # Markdown用法 整理

  10. 关于超出部分隐藏加省略号的css方法

    单行效果:display:block;     white-space:nowrap;  overflow:hidden;    text-overflow:ellipsis; 多行效果:width: ...