Google Tensorflow 源码编译(三):tensorflow<v0.5.0>
这几天终于把tensorflow安装上了,中间遇到过不少的问题,这里记录下来。供大家想源码安装的参考。
安装环境:POWER8处理器,Docker容器Ubuntu14.04镜像。
Build Tensorflow for IBM POWER8 CPU from Source Code
1. My os environment
14.04.1-Ubuntu SMP
ppc64le
gcc 4.8.4
python 2.7.6
2. Install bazel and protobuf
I only have openjdk-7. so I installed bazel 0.1.0, and bazel 0.1.0 needs protobuf v3.0.0-alpha-3, you can refer to “Build Bazel<v0.1.0> for IBM POWER8 CPU from Source Code" for the installation.
3. Install other dependencies
sudo apt-get install python-pip python-dev python-numpy
sudo apt-get install swig
4. get source code
git clone --recurse-submodules https://github.com/tensorflow/tensorflow
5. modify ~/.bazelrc
add build options #you can visit http://bazel.io/docs/bazel-user-manual.html to find these options' descriptions
to build in standalone : --spawn_strategy=standalone --genrule_strategy=standalone
to limit cpu and ram usage : --jobs=20 --ram_utilization_factor percentage=30
6. build source code
./configure (select GPU or CPU)
bazel build -c opt //tensorflow/cc:tutorials_example_trainer
7. Create the pip package and install
7.1 generate tensorflow whl package
if you wan to use tensorflow in python, a pip package should be created
$ bazel build -c opt //tensorflow/tools/pip_package:build_pip_package
# or build with GPU support:
$ bazel build -c opt --config=cuda //tensorflow/tools/pip_package:build_pip_package
after a night, a message displayed:
Target //tensorflow/tools/pip_package:build_pip_package up-to-date:
bazel-bin/tensorflow/tools/pip_package/build_pip_package
INFO: Elapsed time: 32556.820s, Critical Path: 31793.39s
bazel-bin/tensorflow/tools/pip_package/build_pip_package /tmp/tensorflow_pkg
7.2 tensorflow whl package path
opuser@nova:~/tensorflow/tensorflow$ ls /tmp/tensorflow_pkg/
tensorflow-0.5.0-cp27-none-linux_ppc64le.whl
7.3 install whl package using pip
opuser@nova:~/tensorflow/tensorflow$ sudo pip install /tmp/tensorflow_pkg/tensorflow-0.5.0-cp27-none-linux_ppc64le.whl
7.4 tensflow installed package path
opuser@nova:~/tensorflow/tensorflow/tensorflow/models/image/mnist$ ls /usr/local/lib/python2.7/dist-packages
tensorflow tensorflow-0.5.0.dist-info
7.5 train a mnist dataset(#sudo is needed)
# You can alternatively pass the path to the model program file to the python interpreter.
opuser@nova:~$ sudo python /usr/local/lib/python2.7/dist-packages/tensorflow/models/image/mnist/convolutional.py
Succesfully downloaded train-images-idx3-ubyte.gz 9912422 bytes.
Succesfully downloaded train-labels-idx1-ubyte.gz 28881 bytes.
Succesfully downloaded t10k-images-idx3-ubyte.gz 1648877 bytes.
Succesfully downloaded t10k-labels-idx1-ubyte.gz 4542 bytes.
Extracting data/train-images-idx3-ubyte.gz
Extracting data/train-labels-idx1-ubyte.gz
Extracting data/t10k-images-idx3-ubyte.gz
Extracting data/t10k-labels-idx1-ubyte.gz
can't determine number of CPU cores: assuming 4
I tensorflow/core/common_runtime/local_device.cc:40] Local device intra op parallelism threads: 4
can't determine number of CPU cores: assuming 4
I tensorflow/core/common_runtime/direct_session.cc:60] Direct session inter op parallelism threads: 4
Initialized!
Epoch 0.00
Minibatch loss: 12.054, learning rate: 0.010000
Minibatch error: 90.6%
Validation error: 84.6%
Minibatch loss: 3.289, learning rate: 0.010000
......
8. problems during compiling
<Error: gcc: internal compiler error: Killed, com.google.devtools.build.lib.shell.BadExitStatusException: Process exited with status 4.
>
This is due to the lack of cpu ram or swap. you can modify --jobs value or --ram_utilization_factor value . or check if there is any process that occupies large ram. and kill it. It happends to me that there may exist two bazel servers. so I need to kill one.
9. reference
tensorflow/tensorflow/g3doc/get_started/os_setup.md
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/g3doc/get_started/os_setup.md
bazel-user-manual.html
http://bazel.io/docs/bazel-user-manual.html
cuda or cudnn version dismatch
https://github.com/tensorflow/tensorflow/issues/125
Google Tensorflow 源码编译(三):tensorflow<v0.5.0>的更多相关文章
- tensorflow 源码编译tensorflow 1.1.0到 tensorflow 2.0,ver:1.1.0rc1、1.4.0rc1、1.14.0-rc1、2.0.0b1
目录 tensorflow-build table 更多详细过程信息及下载: tensorflow-build tensorflow 源码编译,提升硬件加速,支持cpu加速指令,suport SSE4 ...
- TensorFlow Python2.7环境下的源码编译(三)编译
一.源代码编译 这里要为仅支持 CPU 的 TensorFlow 构建一个 pip 软件包,需要调用以下命令: $ bazel build --cxxopt="-D_GLIBCXX_USE_ ...
- Mac下使用源码编译安装TensorFlow CPU版本
1.安装必要的软件 1.1.安装JDK 8 (1)JDK 8 can be downloaded from Oracle's JDK Page: http://www.oracle.com/techn ...
- centos7 源码编译安装TensorFlow CPU 版本
一.前言 我们都知道,普通使用pip安装的TensorFlow是万金油版本,当你运行的时候,会提示你不是当前电脑中最优的版本,特别是CPU版本,没有使用指令集优化会让TensorFlow用起来更慢. ...
- windows10下如何进行源码编译安装tensorflow
1.获取python3.5.x https://www.python.org/ftp/python/3.5.4/python-3.5.4-amd64.exe 2.安装python3.5.x,默认安装即 ...
- Tensorflow源码编译常见问题点总结
Tensorflow源码编译分两种:一种是本地源码编译,另一种是针对ARM平台的源码编译. 接下来分别介绍: 一.本地编译 本地编译时,使用的编译工具是本地GCC. 一般会碰到以下问题: 第1个:ex ...
- Google Tensorflow 源码编译(二):Bazel<v0.1.0>
这几天终于把tensorflow安装上了,中间遇到过不少的问题,这里记录下来.供大家想源码安装的参考. 安装环境:POWER8处理器,Docker容器Ubuntu14.04镜像. Build Baze ...
- Google Tensorflow 源码编译(一):Protobuf<v3.0.0-alpha-3>
这几天终于把tensorflow安装上了,中间遇到过不少的问题,这里记录下来.供大家想源码安装的参考. 安装环境:POWER8处理器,Docker容器Ubuntu14.04镜像. Build Prot ...
- Tensorflow源码编译,解决tf提示未使用SSE4.1 SSE4.2 AVX警告【转】
本文转载自:https://blog.csdn.net/iTaacy/article/details/72799833 版权声明:欢迎转载,转载请注明出处! https://blog.csdn.net ...
随机推荐
- C#字符串截取
.取前i个字符 ,i); string str1=str.Remove(i,str.Length-i); .去掉前i个字符 ,i); string str1=str.SubString(i); .从右 ...
- [转]Jenkins使用 管理节点
现在我们已经搭建好了基本的Jenkins环境,在这一集里,我们说一说如何管理节点. 进入“系统管理”中的“管理节点”. 创建Windos系统的奴隶节点 先创建一台安装了Win7系统的虚拟机,作为Jen ...
- collections系列
一.计数器(counter) Counter是对字典类型的补充,用于追踪值的出现次数. ps:具备字典的所有功能 + 自己的功能 c = Counter('abcdeabcdabcaba') prin ...
- wordpress视频教程
wordpress还不错的一套自动赚钱视频教程 http://www.ggfenxiang8.com/?p=256
- 合理利用gradle的占位符功能
1.gradle中可以声明字符串或者其他变量,然后再buildType中使用buildConfigField 来往BuildConfig文件中插入一个字符类型的常量,如下 先声明 def umengD ...
- Java控制台中输入中文输出乱码的解决办法
Run---Run Configurations---Common---Encoding---Other---GBK Run Configurations里的Common中将编码方式改成GBK就正常了
- jQuery插件开发的两种方法及$.fn.extend的详解
jQuery插件开发分为两种: 1 类级别 类级别你可以理解为拓展jquery类,最明显的例子是$.ajax(...),相当于静态方法. 开发扩展其方法时使用$.extend方法,即jQuery.ex ...
- CSS hack方式一览【转】
做前端多年,虽然不是经常需要hack,但是我们经常会遇到各浏览器表现不一致的情况.基于此,某些情况我们会极不情愿的使用这个不太友好的方式来达到大家要求的页面表现.我个人是不太推荐使用hack的,要知道 ...
- 使用xib文件创建集合类单元格
UICollectionView是一种新的数据展示方式,简单来说可以把它理解成多列的UITableView.如果你用过iBooks的话,可能你还对书架布局有一定印象,一个虚拟书架上放着你下载和购买的各 ...
- DOm4解析xml
1.创建XML文档对象的的方式有两种 1)Document document=DocumentHelper.createDocument(); 2)DocumentFactory documentFa ...