这几天终于把tensorflow安装上了,中间遇到过不少的问题,这里记录下来。供大家想源码安装的参考。

安装环境:POWER8处理器,Docker容器Ubuntu14.04镜像。

Build Tensorflow for IBM POWER8 CPU from Source Code

1. My os environment
  14.04.1-Ubuntu SMP
  ppc64le
  gcc 4.8.4
  python 2.7.6

2. Install bazel and protobuf
  I only have openjdk-7. so I installed bazel 0.1.0, and bazel 0.1.0 needs protobuf v3.0.0-alpha-3, you can refer to “Build Bazel<v0.1.0> for IBM POWER8 CPU from Source Code" for the installation.

3. Install other dependencies
  sudo apt-get install python-pip python-dev python-numpy
  sudo apt-get install swig

4. get source code
  git clone --recurse-submodules https://github.com/tensorflow/tensorflow

5. modify ~/.bazelrc
  add build options #you can visit http://bazel.io/docs/bazel-user-manual.html to find these options' descriptions
  to build in standalone : --spawn_strategy=standalone --genrule_strategy=standalone
  to limit cpu and ram usage : --jobs=20 --ram_utilization_factor percentage=30

6. build source code

  ./configure (select GPU or CPU)
  bazel build -c opt  //tensorflow/cc:tutorials_example_trainer

7. Create the pip package and install
7.1 generate tensorflow whl package
  if you wan to use tensorflow in python, a pip package should be created
  $ bazel build -c opt //tensorflow/tools/pip_package:build_pip_package
  # or build with GPU support:
  $ bazel build -c opt --config=cuda //tensorflow/tools/pip_package:build_pip_package
  after a night, a message displayed:
  Target //tensorflow/tools/pip_package:build_pip_package up-to-date:
  bazel-bin/tensorflow/tools/pip_package/build_pip_package
  INFO: Elapsed time: 32556.820s, Critical Path: 31793.39s

  bazel-bin/tensorflow/tools/pip_package/build_pip_package /tmp/tensorflow_pkg

7.2 tensorflow whl package path
  opuser@nova:~/tensorflow/tensorflow$ ls /tmp/tensorflow_pkg/
  tensorflow-0.5.0-cp27-none-linux_ppc64le.whl
7.3 install whl package using pip
  opuser@nova:~/tensorflow/tensorflow$ sudo pip install /tmp/tensorflow_pkg/tensorflow-0.5.0-cp27-none-linux_ppc64le.whl
7.4 tensflow installed package path
  opuser@nova:~/tensorflow/tensorflow/tensorflow/models/image/mnist$ ls /usr/local/lib/python2.7/dist-packages
  tensorflow tensorflow-0.5.0.dist-info
7.5 train a mnist dataset(#sudo is needed)
  # You can alternatively pass the path to the model program file to the python interpreter.
  opuser@nova:~$ sudo python /usr/local/lib/python2.7/dist-packages/tensorflow/models/image/mnist/convolutional.py
  Succesfully downloaded train-images-idx3-ubyte.gz 9912422 bytes.
  Succesfully downloaded train-labels-idx1-ubyte.gz 28881 bytes.
  Succesfully downloaded t10k-images-idx3-ubyte.gz 1648877 bytes.
  Succesfully downloaded t10k-labels-idx1-ubyte.gz 4542 bytes.
  Extracting data/train-images-idx3-ubyte.gz
  Extracting data/train-labels-idx1-ubyte.gz
  Extracting data/t10k-images-idx3-ubyte.gz
  Extracting data/t10k-labels-idx1-ubyte.gz
  can't determine number of CPU cores: assuming 4
  I tensorflow/core/common_runtime/local_device.cc:40] Local device intra op parallelism threads: 4
  can't determine number of CPU cores: assuming 4
  I tensorflow/core/common_runtime/direct_session.cc:60] Direct session inter op parallelism threads: 4
  Initialized!
  Epoch 0.00
  Minibatch loss: 12.054, learning rate: 0.010000
  Minibatch error: 90.6%
  Validation error: 84.6%
  Minibatch loss: 3.289, learning rate: 0.010000
  ......

8. problems during compiling
<Error: gcc: internal compiler error: Killed, com.google.devtools.build.lib.shell.BadExitStatusException: Process exited with status 4.
>
  This is due to the lack of cpu ram or swap. you can modify --jobs value or --ram_utilization_factor value . or check if there is any process that occupies large ram. and kill it. It happends to me that there may exist two bazel servers. so I need to kill one.

9. reference
tensorflow/tensorflow/g3doc/get_started/os_setup.md
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/g3doc/get_started/os_setup.md

bazel-user-manual.html
http://bazel.io/docs/bazel-user-manual.html

cuda or cudnn version dismatch

https://github.com/tensorflow/tensorflow/issues/125

Google Tensorflow 源码编译(三):tensorflow<v0.5.0>的更多相关文章

  1. tensorflow 源码编译tensorflow 1.1.0到 tensorflow 2.0,ver:1.1.0rc1、1.4.0rc1、1.14.0-rc1、2.0.0b1

    目录 tensorflow-build table 更多详细过程信息及下载: tensorflow-build tensorflow 源码编译,提升硬件加速,支持cpu加速指令,suport SSE4 ...

  2. TensorFlow Python2.7环境下的源码编译(三)编译

    一.源代码编译 这里要为仅支持 CPU 的 TensorFlow 构建一个 pip 软件包,需要调用以下命令: $ bazel build --cxxopt="-D_GLIBCXX_USE_ ...

  3. Mac下使用源码编译安装TensorFlow CPU版本

    1.安装必要的软件 1.1.安装JDK 8 (1)JDK 8 can be downloaded from Oracle's JDK Page: http://www.oracle.com/techn ...

  4. centos7 源码编译安装TensorFlow CPU 版本

    一.前言 我们都知道,普通使用pip安装的TensorFlow是万金油版本,当你运行的时候,会提示你不是当前电脑中最优的版本,特别是CPU版本,没有使用指令集优化会让TensorFlow用起来更慢. ...

  5. windows10下如何进行源码编译安装tensorflow

    1.获取python3.5.x https://www.python.org/ftp/python/3.5.4/python-3.5.4-amd64.exe 2.安装python3.5.x,默认安装即 ...

  6. Tensorflow源码编译常见问题点总结

    Tensorflow源码编译分两种:一种是本地源码编译,另一种是针对ARM平台的源码编译. 接下来分别介绍: 一.本地编译 本地编译时,使用的编译工具是本地GCC. 一般会碰到以下问题: 第1个:ex ...

  7. Google Tensorflow 源码编译(二):Bazel<v0.1.0>

    这几天终于把tensorflow安装上了,中间遇到过不少的问题,这里记录下来.供大家想源码安装的参考. 安装环境:POWER8处理器,Docker容器Ubuntu14.04镜像. Build Baze ...

  8. Google Tensorflow 源码编译(一):Protobuf<v3.0.0-alpha-3>

    这几天终于把tensorflow安装上了,中间遇到过不少的问题,这里记录下来.供大家想源码安装的参考. 安装环境:POWER8处理器,Docker容器Ubuntu14.04镜像. Build Prot ...

  9. Tensorflow源码编译,解决tf提示未使用SSE4.1 SSE4.2 AVX警告【转】

    本文转载自:https://blog.csdn.net/iTaacy/article/details/72799833 版权声明:欢迎转载,转载请注明出处! https://blog.csdn.net ...

随机推荐

  1. vs2010无可用源

    全选CPP文件内容,选择 “编辑”-“高级”-“设置选定内容的格式”,保存,重新编译. 当然这种方法是不能完全解决这个问题的奥,你需要在菜单栏的生成里面找到重新生成解决方案,重新生成解决方案试一下啦, ...

  2. python 字符串内建函数

    方法 描述 string.capitalize() 把字符串的第一个字符大写 string.center(width) 返回一个原字符串居中,并使用空格填充至长度 width 的新字符串 string ...

  3. 【Fine原创】常见的HTTP错误码的具体含义整理

    常见的HTTP错误码的具体含义     "100" : Continue   客户端应当继续发送请求. "101" : witching Protocols   ...

  4. CoInitialize浅析二

    最近工作比较忙,在粗略分析了CoInitialize之后我们一直没有再深入研究,下面言归正传.前面我们初步了解到了CoInitialize其实是通过调用CoInitializeEx来实现功能的,而后者 ...

  5. B - I Hate It

    #include<cstdio> #include<string.h> using namespace std; int ans; ; ]; struct Node{ int ...

  6. C#面向接口编程详解(1)——思想基础

    我想,对于各位使用面向对象编程语言的程序员来说,“接口”这个名词一定不陌生,但是不知各位有没有这样的疑惑:接口有什么用途?它和抽象类有什么区别?能不能用抽象类代替接口呢?而且,作为程序员,一定经常听到 ...

  7. ubuntu随笔

    在命令行里输入 sudo nautilus 之后输入你的用户的密码,会弹出一个目录窗口来,可以复制到这来

  8. getElementById,getElementsByName,getElementsByTagName的区别

    1.getElementById 作用:一般页面里ID是唯一的,用于准备定为一个元素 语法: document.getElementById(id) 参数:id :必选项为字符串(String) 返回 ...

  9. js实现图片实时预览

    注: 此博客转自 http://www.cnblogs.com/goody9807/p/6064582.html  转载请注明出处 <body> 上传图片: <input type= ...

  10. C++中 vector(容器)的用法

    vector(向量): C++中的一种数据结构,确切的说是一个类.它相当于一个动态的数组,当程序员无法知道自己需要的数组的规模多大时,用其来解决问题可以达到最大节约空间的目的. 用法: 1.文件包含: ...