In my stochastic processes class, Prof Mike Steele assigned a homework problem to calculate the ruin probabilities for playing a game where you with 1 dollar with probability p and lose 1 dollar with probability 1-p. The probability of winning is not specified, so it can be a biased game. Ruin probabilities are defined to be the probability that in a game you win 10 before losing 10, win 25 before losing 25, and win 50 before losing 50, etc. In total, I found three distinct methods to calculate.

This is a particularly great example to illustrate how to solve a problem using three fundamentally different methods: the first is theoretical calculation, second is simulation to obtain asymptotic values, and third is numerical linear algebra (matrix algorithm) which also gives exact values.


Method 1: First Step Analysis and Direct Computation of Ruin Probabilities

Let h(x) be the probability of winning $n before losing stake of x dollars.

First step analysis gives us a system of three equations: h(0) = 0; h(n) = 1; h(x) = p*h(x+1) + (1-p)*h(x-1).

How to solve this system of equations? We need the "one" trick and the telescoping sequence.

The trick is: (p + (1-p)) * h(x) = h(x) = p*h(x+1) + (1-p)*h(x-1) => p*(h(x+1) - h(x)) = (1-p)*(h(x) - h(x-1)) => h(x+1) - h(x) = (1-p)/p * (h(x)-h(x-1))

Denote h(1) - h(0) = c, which is unknown yet, we have a telescoping sequence: h(1) - h(0) = c; h(2) - h(1) = (1-p)/p * c; h(3) - h(2) = ((1-p)/p)^2 * c ... h(n) - h(n-1) = ((1-p)/p)^(n-1) * c.

Now, add up the telescoping sequence and use the initial conditions, we get: 1 = h(n) = c*(1+ ((1-p)/p) + ((1-p)/p)^2 + ... + ((1-p)/p)^(n-1)) => c = (1 - (1-p)/p) / (1 - ((1-p)/p)^N-1). So h(x) = c * (((1-p)/p) ^ x - 1) / ((1-p)/p)-1) = (((1-p)/p) ^ x - 1) / (((1-p)/p)^N - 1)


Method 2: Monte Carlo Simulation of Ruin Probabilities

The idea is to simulate sample paths from initial stake of x dollars and stop when it either hits 0 or targeted wealth of n.

We can specify the number of trials and get the percentage of trials which eventually hit 0 and which eventuallyhit n. This is important - in fact, I think the essence of Monte Carlo method is to have a huge number of trials to maintain accuracy, and to get a percentage of the number of successful trials in the total number of trials.

In each step of a trial, we need a Bernoulli random variable (as in a coin flip) to increment x by 1 with probability p and -1 with probability 1-p.

In Python this becomes:

from numpy import random
import numpy as np def MC(x,a,p):
  end_wealth = a
  init_wealth = x
  list = []
  for k in range(0, 1000000):
    while x!= end_wealth and x!= 0:
      if np.random.binomial(1,p,1) == 1:
        x += 1
      else:
        x -= 1
    if x == a:
      list.append(1)
    else:
      list.append(0)
  x = init_wealth
  print float(sum(list))/len(list) MC(10,20,0.4932)
MC(25,50,0.4932)
MC(50,100,0.4932)

You can see the result of this simulation by plugging in p = 0.4932 = (18/37)*.5 + .5*.5 = 0.4932, which is the probability of winning the European Roulette with prisoner's rule. As the number of trials get bigger and bigger, the result gets closer and closer to the theoretical value calculated under Method 1.


Method 3: Tridiagonal System

According to wiki, a tridiagonal system has the form of a_i * x_i-1 + b_i * x_i + c_i * x_i+1 = d_i where i's are indices.

It is clear that the ruin problem exactly satisfies this form, i.e.  h(x) := probability of winning n starting from i, h(x) = (1-p)*h(x-1) + p*h(x+1) => -(1-p)*h(x-1) + h(x) -p*h(x+1) = 0, h(0) = 0, h(n) = 1.

And therefore, for the tridiagonal matrix, the main diagonal consists of 1's, and the upper diagonal consists of -(1-p)'s, and the lower diagonal consists of -p's.

In Python this becomes:

import numpy as np
from scipy import sparse
from scipy.sparse.linalg import spsolve n = 100
p = 0.4932
q = 1-p d_main = np.ones(n+1)
d_super = -p * d_main
d_super[1] = 0
d_sub = -q * d_main
d_sub[n-1] = 0 data = [d_sub, d_main, d_super]
print data
A = sparse.spdiags(data, [-1,0,1], n+1, n+1, format='csc') b = np.zeros(n+1)
b[n] = 1
x = spsolve(A, b)
print x

Gambler's Ruin Problem and 3 Solutions的更多相关文章

  1. [Introduction to programming in Java 笔记] 1.3.8 Gambler's ruin simulation 赌徒破产模拟

    赌徒赢得机会有多大? public class Gambler { public static void main(String[] args) { // Run T experiments that ...

  2. 比特币_Bitcoin 简介

    2008-11   Satoshi Nakamoto  Bitcoin: A Peer-to-Peer Electronic Cash System http://p2pbucks.com/?p=99 ...

  3. Bitcoin: A Peer-to-Peer Electronic Cash System

    Bitcoin: A Peer-to-Peer Electronic Cash System Satoshi Nakamoto October 31, 2008 Abstract A purely p ...

  4. Mathematics for Computer Science (Eric Lehman / F Thomson Leighton / Albert R Meyer 著)

    I Proofs1 What is a Proof?2 The Well Ordering Principle3 Logical Formulas4 Mathematical Data Types5 ...

  5. [0x01 用Python讲解数据结构与算法] 关于数据结构和算法还有编程

    忍耐和坚持虽是痛苦的事情,但却能渐渐地为你带来好处. ——奥维德 一.学习目标 · 回顾在计算机科学.编程和问题解决过程中的基本知识: · 理解“抽象”在问题解决过程中的重要作用: · 理解并实现抽象 ...

  6. URAL 1430 Crime and Punishment

    Crime and Punishment Time Limit:500MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u ...

  7. Attention and Augmented Recurrent Neural Networks

    Attention and Augmented Recurrent Neural Networks CHRIS OLAHGoogle Brain SHAN CARTERGoogle Brain Sep ...

  8. Win7 服务优化个人单机版

    我的PC设备比较旧了,为了系统能流畅点,不必要的服务就不开启了.然而,服务那么多,每次重装,都要从头了解一下一边,浪费时间. 个人在网络上收集信息并结合自己的摸索,整理如下,以备查找. 服务名称  显 ...

  9. [转]WIN7服务一些优化方法

    本文转自:http://bbs.cfanclub.net/thread-391985-1-1.html Win7的服务,手动的一般不用管他,有些自动启动的,但对于有些用户来说是完全没用的,可以考虑禁用 ...

随机推荐

  1. 全是套路——BFS

    #include <iostream> #include <vector> #include <string> #include <vector> #i ...

  2. UML类图画法及其之间的几种关系(转)

    UML类图画法及其之间的几种关系 最近做重构项目,需要画一下类图,发现类图的画法及其之间的几种关系已经淡忘了很多,所以整理总结一下,有问题的地方大家可以一起讨论下. 文章目录如下: 类图画法 类之间的 ...

  3. 试一下CANVAS

    // 此应用源代码如下: document.getElementById("codetext").innerHTML = document.getElementById(" ...

  4. <![CDATA[ ]]> 的作用

    在xml文件中 一些特殊字符需要去除其本意,就要用到 <![CDATA[    ]]>,,比如 ibitis的sqlmap.xml 中  要比较大小不能直接用 < 或者 > , ...

  5. Interpreter(解释器)-类行为型模式

    1.意图 给定一个语言,定义它的文法的一种表示,并定义一个解释器,这个解释器使用该表示来解释语言中的句子. 2.动机 如果一种特定类型的问题发生的频率足够高,那么可能就值的将该问题的各个实例表述为一个 ...

  6. 第一次将内容添加到azure event hubs

    由于每秒数据吞吐量巨大,需要将实时数据存到event hubs,再由event hubs定时定量保存到document DB. event hubs的介绍详见微软官页:https://azure.mi ...

  7. myeclipse中如何导入mysql-connector-java-5.1.8-bin.jar【环境配置和工具使用】

    前提:我建立了一个java project,工程名字为Test,现在需要连接mysql数据库,所以提前从网上将java操作mysql数据库的mysql-connector-java-5.1.8-bin ...

  8. ABP mapto 映射

    obj1.MapTo(obj2); obj1=>obj2: 在obj1实体里添加映射 [AutoMap(typeof(obj2))] public class obj1 { }

  9. MongoDB学习:(一)MongoDB安装

    MongoDB学习:(一)MongoDB安装 MongoDB介绍:     直接百科了: MongoDB安装: 1:下载安装: MongoDB安装:https://www.mongodb.com/do ...

  10. 在Android开发中如何判读当前设备是否连接网络

    1:前言: 我们在Android开发的过程中,很多实现是要向远程服务器拿数据的,但是未必当前设备一定连接了网络啊,那么此时我们就是要进行判断的了, 如果是有网络的话,那么此时就去向远程服务器去拿数据, ...