Gambler's Ruin Problem and 3 Solutions
In my stochastic processes class, Prof Mike Steele assigned a homework problem to calculate the ruin probabilities for playing a game where you with 1 dollar with probability p and lose 1 dollar with probability 1-p. The probability of winning is not specified, so it can be a biased game. Ruin probabilities are defined to be the probability that in a game you win 10 before losing 10, win 25 before losing 25, and win 50 before losing 50, etc. In total, I found three distinct methods to calculate.
This is a particularly great example to illustrate how to solve a problem using three fundamentally different methods: the first is theoretical calculation, second is simulation to obtain asymptotic values, and third is numerical linear algebra (matrix algorithm) which also gives exact values.
Method 1: First Step Analysis and Direct Computation of Ruin Probabilities
Let h(x) be the probability of winning $n before losing stake of x dollars.
First step analysis gives us a system of three equations: h(0) = 0; h(n) = 1; h(x) = p*h(x+1) + (1-p)*h(x-1).
How to solve this system of equations? We need the "one" trick and the telescoping sequence.
The trick is: (p + (1-p)) * h(x) = h(x) = p*h(x+1) + (1-p)*h(x-1) => p*(h(x+1) - h(x)) = (1-p)*(h(x) - h(x-1)) => h(x+1) - h(x) = (1-p)/p * (h(x)-h(x-1))
Denote h(1) - h(0) = c, which is unknown yet, we have a telescoping sequence: h(1) - h(0) = c; h(2) - h(1) = (1-p)/p * c; h(3) - h(2) = ((1-p)/p)^2 * c ... h(n) - h(n-1) = ((1-p)/p)^(n-1) * c.
Now, add up the telescoping sequence and use the initial conditions, we get: 1 = h(n) = c*(1+ ((1-p)/p) + ((1-p)/p)^2 + ... + ((1-p)/p)^(n-1)) => c = (1 - (1-p)/p) / (1 - ((1-p)/p)^N-1). So h(x) = c * (((1-p)/p) ^ x - 1) / ((1-p)/p)-1) = (((1-p)/p) ^ x - 1) / (((1-p)/p)^N - 1)
Method 2: Monte Carlo Simulation of Ruin Probabilities
The idea is to simulate sample paths from initial stake of x dollars and stop when it either hits 0 or targeted wealth of n.
We can specify the number of trials and get the percentage of trials which eventually hit 0 and which eventuallyhit n. This is important - in fact, I think the essence of Monte Carlo method is to have a huge number of trials to maintain accuracy, and to get a percentage of the number of successful trials in the total number of trials.
In each step of a trial, we need a Bernoulli random variable (as in a coin flip) to increment x by 1 with probability p and -1 with probability 1-p.
In Python this becomes:
from numpy import random
import numpy as np def MC(x,a,p):
end_wealth = a
init_wealth = x
list = []
for k in range(0, 1000000):
while x!= end_wealth and x!= 0:
if np.random.binomial(1,p,1) == 1:
x += 1
else:
x -= 1
if x == a:
list.append(1)
else:
list.append(0)
x = init_wealth
print float(sum(list))/len(list) MC(10,20,0.4932)
MC(25,50,0.4932)
MC(50,100,0.4932)
You can see the result of this simulation by plugging in p = 0.4932 = (18/37)*.5 + .5*.5 = 0.4932, which is the probability of winning the European Roulette with prisoner's rule. As the number of trials get bigger and bigger, the result gets closer and closer to the theoretical value calculated under Method 1.
Method 3: Tridiagonal System
According to wiki, a tridiagonal system has the form of a_i * x_i-1 + b_i * x_i + c_i * x_i+1 = d_i where i's are indices.
It is clear that the ruin problem exactly satisfies this form, i.e. h(x) := probability of winning n starting from i, h(x) = (1-p)*h(x-1) + p*h(x+1) => -(1-p)*h(x-1) + h(x) -p*h(x+1) = 0, h(0) = 0, h(n) = 1.
And therefore, for the tridiagonal matrix, the main diagonal consists of 1's, and the upper diagonal consists of -(1-p)'s, and the lower diagonal consists of -p's.
In Python this becomes:
import numpy as np
from scipy import sparse
from scipy.sparse.linalg import spsolve n = 100
p = 0.4932
q = 1-p d_main = np.ones(n+1)
d_super = -p * d_main
d_super[1] = 0
d_sub = -q * d_main
d_sub[n-1] = 0 data = [d_sub, d_main, d_super]
print data
A = sparse.spdiags(data, [-1,0,1], n+1, n+1, format='csc') b = np.zeros(n+1)
b[n] = 1
x = spsolve(A, b)
print x
Gambler's Ruin Problem and 3 Solutions的更多相关文章
- [Introduction to programming in Java 笔记] 1.3.8 Gambler's ruin simulation 赌徒破产模拟
赌徒赢得机会有多大? public class Gambler { public static void main(String[] args) { // Run T experiments that ...
- 比特币_Bitcoin 简介
2008-11 Satoshi Nakamoto Bitcoin: A Peer-to-Peer Electronic Cash System http://p2pbucks.com/?p=99 ...
- Bitcoin: A Peer-to-Peer Electronic Cash System
Bitcoin: A Peer-to-Peer Electronic Cash System Satoshi Nakamoto October 31, 2008 Abstract A purely p ...
- Mathematics for Computer Science (Eric Lehman / F Thomson Leighton / Albert R Meyer 著)
I Proofs1 What is a Proof?2 The Well Ordering Principle3 Logical Formulas4 Mathematical Data Types5 ...
- [0x01 用Python讲解数据结构与算法] 关于数据结构和算法还有编程
忍耐和坚持虽是痛苦的事情,但却能渐渐地为你带来好处. ——奥维德 一.学习目标 · 回顾在计算机科学.编程和问题解决过程中的基本知识: · 理解“抽象”在问题解决过程中的重要作用: · 理解并实现抽象 ...
- URAL 1430 Crime and Punishment
Crime and Punishment Time Limit:500MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u ...
- Attention and Augmented Recurrent Neural Networks
Attention and Augmented Recurrent Neural Networks CHRIS OLAHGoogle Brain SHAN CARTERGoogle Brain Sep ...
- Win7 服务优化个人单机版
我的PC设备比较旧了,为了系统能流畅点,不必要的服务就不开启了.然而,服务那么多,每次重装,都要从头了解一下一边,浪费时间. 个人在网络上收集信息并结合自己的摸索,整理如下,以备查找. 服务名称 显 ...
- [转]WIN7服务一些优化方法
本文转自:http://bbs.cfanclub.net/thread-391985-1-1.html Win7的服务,手动的一般不用管他,有些自动启动的,但对于有些用户来说是完全没用的,可以考虑禁用 ...
随机推荐
- gdnz
更新yum库:yum updat yum install epel-release 查看是否安装mysql:rpm -qa|grep -i mysql 移除列表mysql :yum remo ...
- 处理数组的forEach map filter的兼容性
处理数组的forEach //forEach处理 if(!Array.prototype.forEach) { Array.prototype.forEach = function (callback ...
- The processing instruction target matching ''[xX][mM][lL]" is not allowed
报错的来源是: <?xml version="1.0" encoding="UTF8"?> 解决方案::,一般是WSDL的头文件的格式出了问题,比如 ...
- centos6.4安装Apache+MySQL+PHP
一.安装 MySQL 首先来进行 MySQL 的安装.打开超级终端,输入: [root@localhost ~]# yum install mysql mysql-server 安装完毕,让 MySQ ...
- linux命令(5):rm 命令
linux中删除文件和目录的命令: rm命令.rm是常用的命令,该命令的功能为删除一个目录中的一个或多个文件或目录,它也可以将某个目录及其下的所有文件及子目录均删除.对于链接文件,只是删除了链接,原有 ...
- JavaScript学习(一)—处理事件2
下面的表中为最常用的 12 种 JavaScript 事件处理程序. 一.处理窗口事件(onload事件,onunload事件,onresize事件,onmove事件,onabort事件,onerro ...
- JavaScript内置对象之数组
一.JavaScript对象之数组 1.创建数组的方式 (1)使用Array构造函数 语法:new Array() 小括号()说明: -预先知道数组要保存的项目数量 -向Array构造函数中传递数组应 ...
- Mob.com 短信验证的简单使用
1.环境配置 http://wiki.sharesdk.cn/android-短信sdk集成文档/ a.sdk下载 http://www.mob.com/#/downloadDetail/SMS/an ...
- extern extern “C”用法详解
1.extern 修饰一个变量,告诉编译器这个变量在其他地方定义,编译器不会给出变量未定义的警告. extern tells the compiler that the variable is def ...
- UIAlertViewController的使用
UIAlertViewController是苹果自带的信息提示框,仅在iOS8.0以后可以使用 NS_CLASS_AVAILABLE_IOS(8_0) @interface UIAlertContro ...