Hdu 1081 To The Max
To The Max
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 7620 Accepted Submission(s): 3692
Problem Description
integers, a sub-rectangle is any contiguous sub-array of size 1 x 1 or greater
located within the whole array. The sum of a rectangle is the sum of all the
elements in that rectangle. In this problem the sub-rectangle with the largest
sum is referred to as the maximal sub-rectangle.
As an example, the
maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4
1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1
8
and has a sum of 15.
Input
input begins with a single positive integer N on a line by itself, indicating
the size of the square two-dimensional array. This is followed by N 2 integers
separated by whitespace (spaces and newlines). These are the N 2 integers of the
array, presented in row-major order. That is, all numbers in the first row, left
to right, then all numbers in the second row, left to right, etc. N may be as
large as 100. The numbers in the array will be in the range
[-127,127].
Output
Sample Input
8 0 -2
Sample Output
#include <iostream>
#include <cstdio>
using namespace std;
#define N 105
int arr[N][N],b[N];
int dp(int *a,int m) //求一维数组的最大子段和
{
int i,sum,max;
sum = 0;
max = 0;
for(i=0; i<N; i++)
{
sum += a[i];
if(sum<0)
sum = 0;
if(sum>max)
max = sum;
}
return max;
}
int main()
{
int i,j,k,n,sum,max;
while(scanf("%d",&n)!=EOF)
{
for(i=0; i<n; i++)
for(j=0; j<n; j++)
scanf("%d",&arr[i][j]);
max = 0;
for(i=0; i<n; i++)
{
memset(b,0,sizeof(b));
for(j=i; j<n; j++)
{
for(k=0; k<n; k++)
b[k] += arr[j][k];
sum = dp(b,n);
if(sum>max)
max = sum;
}
}
printf("%d\n",max);
}
return 0;
}
Hdu 1081 To The Max的更多相关文章
- hdu 1081 To The Max(dp+化二维为一维)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1081 To The Max Time Limit: 2000/1000 MS (Java/Others ...
- HDU 1081 To The Max【dp,思维】
HDU 1081 题意:给定二维矩阵,求数组的子矩阵的元素和最大是多少. 题解:这个相当于求最大连续子序列和的加强版,把一维变成了二维. 先看看一维怎么办的: int getsum() { ; int ...
- dp - 最大子矩阵和 - HDU 1081 To The Max
To The Max Problem's Link: http://acm.hdu.edu.cn/showproblem.php?pid=1081 Mean: 求N*N数字矩阵的最大子矩阵和. ana ...
- URAL 1146 Maximum Sum & HDU 1081 To The Max (DP)
点我看题目 题意 : 给你一个n*n的矩阵,让你找一个子矩阵要求和最大. 思路 : 这个题都看了好多天了,一直不会做,今天娅楠美女给讲了,要转化成一维的,也就是说每一列存的是前几列的和,也就是说 0 ...
- HDU 1081 To The Max(动态规划)
题目链接 Problem Description Given a two-dimensional array of positive and negative integers, a sub-rect ...
- ACM HDU 1081 To The Max
To The Max Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) To ...
- hdu 1081 To The Max(二维压缩的最大连续序列)(最大矩阵和)
Problem Description Given a two-dimensional array of positive and negative integers, a sub-rectangle ...
- HDU 1081 To The Max (dp)
题目链接 Problem Description Given a two-dimensional array of positive and negative integers, a sub-rect ...
- HDU 1081 To the Max 最大子矩阵(动态规划求最大连续子序列和)
Description Given a two-dimensional array of positive and negative integers, a sub-rectangle is any ...
随机推荐
- HDU 2243 考研路茫茫——单词情结(AC自动机+DP+快速幂)
题目链接 错的上头了... 这题是DNA的加强版,26^1 +26^2... - A^1-A^2... 先去学了矩阵的等比数列求和,学的是第二种方法,扩大矩阵的方法.剩下就是各种模板,各种套. #in ...
- 最简单的html轮播图制作适合新手
html代码 --------------------------------------------------------------------------------------------- ...
- MySQL函数操作数据库
1.select语句查询信息(实现模糊查询) <form name="form1" method="post" action=""&g ...
- Memcache及telnent命令详解
1.启动Memcache 常用参数 memcached 1.4.3 -p <num> 设置端口号(默认不设置为: 11211) -U <num> UDP监听 ...
- iOS CoreAnimation 核心动画
一 介绍 一组非常强大的动画处理API 直接作用在CALAyer上,并非UIView(UIView动画) CoreAnimation是所有动画的父类,但是不能直接使用,应该使用其子类 属性: dura ...
- Ubuntu下安装R语言和开发环境
[简介]R是用于统计分析.绘图的语言和操作环境.R是属于GNU系统的一个自由.免费.源代码开放的软件,它是一个用于统计计算和统计制图的优秀工具. [R语言的安装]官网:https://www.r-pr ...
- javascript循环和数组的基础练习
九九乘法表 <script> //外层循环行数 for(var i=0; i<=9; i++){ //内曾循环控制每一行的列数 for(var j=0;j<=i; j++){ ...
- iOS Crash日志
Understanding Crash Reports on iPhone OS https://developer.apple.com/videos/wwdc/2010/?id=317 http:/ ...
- html css 样式继承的问题
body 设置css中可以继承的属性:letter-spacing.word-spacing.white-space.line-height.color.font等 但有时,body的样式,不能在有的 ...
- Tomcat catalina.out日志使用log4j按天分割
由于tomcat catalina.out日志不会自动分割, 一.日志分割所需包在附近中 1. 压缩包中有三个jar包: log4j-1.2.16.jar tomcat-juli-adapters.j ...