Hdu 1081 To The Max
To The Max
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 7620 Accepted Submission(s): 3692
Problem Description
integers, a sub-rectangle is any contiguous sub-array of size 1 x 1 or greater
located within the whole array. The sum of a rectangle is the sum of all the
elements in that rectangle. In this problem the sub-rectangle with the largest
sum is referred to as the maximal sub-rectangle.
As an example, the
maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4
1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1
8
and has a sum of 15.
Input
input begins with a single positive integer N on a line by itself, indicating
the size of the square two-dimensional array. This is followed by N 2 integers
separated by whitespace (spaces and newlines). These are the N 2 integers of the
array, presented in row-major order. That is, all numbers in the first row, left
to right, then all numbers in the second row, left to right, etc. N may be as
large as 100. The numbers in the array will be in the range
[-127,127].
Output
Sample Input
8 0 -2
Sample Output
#include <iostream>
#include <cstdio>
using namespace std;
#define N 105
int arr[N][N],b[N];
int dp(int *a,int m) //求一维数组的最大子段和
{
int i,sum,max;
sum = 0;
max = 0;
for(i=0; i<N; i++)
{
sum += a[i];
if(sum<0)
sum = 0;
if(sum>max)
max = sum;
}
return max;
}
int main()
{
int i,j,k,n,sum,max;
while(scanf("%d",&n)!=EOF)
{
for(i=0; i<n; i++)
for(j=0; j<n; j++)
scanf("%d",&arr[i][j]);
max = 0;
for(i=0; i<n; i++)
{
memset(b,0,sizeof(b));
for(j=i; j<n; j++)
{
for(k=0; k<n; k++)
b[k] += arr[j][k];
sum = dp(b,n);
if(sum>max)
max = sum;
}
}
printf("%d\n",max);
}
return 0;
}
Hdu 1081 To The Max的更多相关文章
- hdu 1081 To The Max(dp+化二维为一维)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1081 To The Max Time Limit: 2000/1000 MS (Java/Others ...
- HDU 1081 To The Max【dp,思维】
HDU 1081 题意:给定二维矩阵,求数组的子矩阵的元素和最大是多少. 题解:这个相当于求最大连续子序列和的加强版,把一维变成了二维. 先看看一维怎么办的: int getsum() { ; int ...
- dp - 最大子矩阵和 - HDU 1081 To The Max
To The Max Problem's Link: http://acm.hdu.edu.cn/showproblem.php?pid=1081 Mean: 求N*N数字矩阵的最大子矩阵和. ana ...
- URAL 1146 Maximum Sum & HDU 1081 To The Max (DP)
点我看题目 题意 : 给你一个n*n的矩阵,让你找一个子矩阵要求和最大. 思路 : 这个题都看了好多天了,一直不会做,今天娅楠美女给讲了,要转化成一维的,也就是说每一列存的是前几列的和,也就是说 0 ...
- HDU 1081 To The Max(动态规划)
题目链接 Problem Description Given a two-dimensional array of positive and negative integers, a sub-rect ...
- ACM HDU 1081 To The Max
To The Max Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) To ...
- hdu 1081 To The Max(二维压缩的最大连续序列)(最大矩阵和)
Problem Description Given a two-dimensional array of positive and negative integers, a sub-rectangle ...
- HDU 1081 To The Max (dp)
题目链接 Problem Description Given a two-dimensional array of positive and negative integers, a sub-rect ...
- HDU 1081 To the Max 最大子矩阵(动态规划求最大连续子序列和)
Description Given a two-dimensional array of positive and negative integers, a sub-rectangle is any ...
随机推荐
- align使图片和文字居中
<img src=... align=absmiddle />
- Leetcode Valid Sudoku
Determine if a Sudoku is valid, according to: Sudoku Puzzles - The Rules. The Sudoku board could be ...
- [Note] Software Testing
Mocking: Difference between error and failure: TDD: BDD:
- SASS+COMPASS 自适应 学习笔记
来源 http://snugug.github.io/RWD-with-Sass-Compass/#/ 1 安装 COMPASS 扩展 安装 方式 gem 'extension', '~>X.Y ...
- Cenos7 编译安装 Mariadb Nginx PHP Memcache ZendOpcache (实测 笔记 Centos 7.0 + Mariadb 10.0.15 + Nginx 1.6.2 + PHP 5.5.19)
环境: 系统硬件:vmware vsphere (CPU:2*4核,内存2G,双网卡) 系统版本:CentOS-7.0-1406-x86_64-DVD.iso 安装步骤: 1.准备 1.1 显示系统版 ...
- Hadoop_UDAF示例
UDAF: 多进一出 GenericUDAFEvaluator : 就是根据job的不同阶段执行不同的方法 Hive通过GenericUDAFEvaluator.Modle来确定job的执行阶段 PA ...
- 【资源】HTML5工具篇:10个营销人也能轻松使用的在线编辑平台
一 3, 2015 in 资源 作者:Teeya 2014年,HTML5 页面作为营销界新宠儿,“多快好省”的杰出代表,其灵活性高.开发成本低且制作周期短的种种特性使其在移动营销领域大放异彩. 此前, ...
- SQL语法
full outer--全连.两表相同的组合在一起,A表有,B表没有的数据(显示为null),同样B表有,A表没有的显示为(null) A表 left join B表--左连,以A表为基础,A表的全部 ...
- 关于各种类型数据char、int、double、float 所占空间长度的计算,而char类型让我长姿势了
#include <iostream> int main() { using namespace std; //int A=10; //double B=6; cout << ...
- C# 方法的回调(上)
在C#编程中方法的回调有以下几种方式 通过接口.通过委托.定时回调.多线程回调,异步回调 下面就以代码的形式来讲解这种方式 通过接口回调 代码示例如下 定义接口,定义了一个Run 方法: interf ...