【POJ3621】Sightseeing Cows
| Time Limit: 1000MS | Memory Limit: 65536K | |
| Total Submissions: 8331 | Accepted: 2791 |
Description
Farmer John has decided to reward his cows for their hard work by taking them on a tour of the big city! The cows must decide how best to spend their free time.
Fortunately, they have a detailed city map showing the L (2 ≤ L ≤ 1000) major landmarks (conveniently numbered 1.. L) and the P (2 ≤ P ≤ 5000) unidirectional cow paths that join them. Farmer John will drive the cows to a starting landmark of their choice, from which they will walk along the cow paths to a series of other landmarks, ending back at their starting landmark where Farmer John will pick them up and take them back to the farm. Because space in the city is at a premium, the cow paths are very narrow and so travel along each cow path is only allowed in one fixed direction.
While the cows may spend as much time as they like in the city, they do tend to get bored easily. Visiting each new landmark is fun, but walking between them takes time. The cows know the exact fun values Fi (1 ≤ Fi ≤ 1000) for each landmark i.
The cows also know about the cowpaths. Cowpath i connects landmark L1i to L2i (in the direction L1i -> L2i ) and requires time Ti (1 ≤ Ti ≤ 1000) to traverse.
In order to have the best possible day off, the cows want to maximize the average fun value per unit time of their trip. Of course, the landmarks are only fun the first time they are visited; the cows may pass through the landmark more than once, but they do not perceive its fun value again. Furthermore, Farmer John is making the cows visit at least two landmarks, so that they get some exercise during their day off.
Help the cows find the maximum fun value per unit time that they can achieve.
Input
* Line 1: Two space-separated integers: L and P
* Lines 2..L+1: Line i+1 contains a single one integer: Fi
* Lines L+2..L+P+1: Line L+i+1 describes cow path i with three space-separated integers: L1i , L2i , and Ti
Output
* Line 1: A single number given to two decimal places (do not perform explicit rounding), the maximum possible average fun per unit time, or 0 if the cows cannot plan any trip at all in accordance with the above rules.
Sample Input
5 7
30
10
10
5
10
1 2 3
2 3 2
3 4 5
3 5 2
4 5 5
5 1 3
5 2 2
Sample Output
6.00
题意:给出一个有向图 问求一个回路 使得回路上的点权之和/边权之和最大
01分数规划,简单构造,将点权转移到边权上~因为一个环上的点和边的数量是相等的~
设i,j之间初始边权为w[i][j],修改后的边权为g[i][j],则g[i][j]=w[i][j]*mid+val[i]
spfa判负环即可~
其实说起来很简单写的时候好烦。。。。因为G++%lf输出问题WA了好多次。。。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <algorithm>
#include <cmath>
using namespace std; const int maxn = ;
const int maxm = ;
int a[maxm], b[maxm];
int head[maxn], next[maxm], to[maxm];
int q[maxn*], im[maxm];
int vis[maxn];
int cnt, st;
int n, m;
double l, r, mid;
double c[maxm], dis[maxn], len[maxm], val[maxn]; inline void add(int u, int v, double w);
bool dfs(int u);
bool spfa(); int main(){
while(scanf("%d%d", &n, &m)!=EOF){
for(int i = ; i <= n; ++i){
scanf("%lf", &val[i]);
} memset(head, -, sizeof(head));
cnt = ;
for(int i = ; i <= m; ++i){
scanf("%d%d%lf", &a[i], &b[i], &c[i]);
add(a[i], b[i], c[i]);
} l = 0.0;
r = 1000.0;
while(r-l > 1e-){
mid = (r+l) / 2.0;
if(spfa()){
l = mid;
}
else{
r = mid;
}
}
printf("%.2f\n", mid);
}
return ;
} inline void add(int u, int v, double w){
to[cnt] = v;
len[cnt] = w;
next[cnt] = head[u];
head[u] = cnt++;
} bool dfs(int u){
vis[u] = st;
for(int i = head[u]; ~i; i = next[i]){
if(dis[to[i]] > dis[u] + len[i]*mid - val[u]){
dis[to[i]] = dis[u] + len[i]*mid - val[u];
if(vis[to[i]] == st){
return true;
}
else if(dfs(to[i])){
return true;
}
}
}
vis[u] = ;
return false;
} bool spfa(){
memset(vis, , sizeof(vis));
for(st = ; st <= n; ++st){
if(dfs(st)){
return true;
}
}
return false;
}
【POJ3621】Sightseeing Cows的更多相关文章
- 【POJ3621】Sightseeing Cows 分数规划
[POJ3621]Sightseeing Cows 题意:在给定的一个图上寻找一个环路,使得总欢乐值(经过的点权值之和)/ 总时间(经过的边权值之和)最大. 题解:显然是分数规划,二分答案ans,将每 ...
- 【POJ3621】【洛谷2868】Sightseeing Cows(分数规划)
[POJ3621][洛谷2868]Sightseeing Cows(分数规划) 题面 Vjudge 洛谷 大意: 在有向图图中选出一个环,使得这个环的点权\(/\)边权最大 题解 分数规划 二分答案之 ...
- 【POJ2182】Lost Cows
[POJ2182]Lost Cows 题面 vjudge 题解 从后往前做 每扫到一个点\(i\)以及比前面小的有\(a[i]\)个数 就是查询当前的第\(a[i]+1\)小 然后查询完将这个数删掉 ...
- 【2186】Popular Cows(强连通分支及其缩点)
id=2186">[2186]Popular Cows(强联通分支及其缩点) Popular Cows Time Limit: 2000MS Memory Limit: 65536 ...
- 【POJ】【1637】Sightseeing tour
网络流/最大流 愚人节快乐XD 这题是给一个混合图(既有有向边又有无向边),让你判断是否有欧拉回路…… 我们知道如果一个[连通]图中每个节点都满足[入度=出度]那么就一定有欧拉回路…… 那么每条边都可 ...
- 【洛谷P2868】Sightseeing Cows
题目大意:给定一个 N 个点,M 条边的有向图,点有点权,边有边权,求该有向图中的一个环,使得环上点权和与环上边权和之比最大. 题解:0/1 分数规划思想,每次二分一个 mid,在新图上跑 spfa, ...
- 【USACO】Milking Cows
Three farmers rise at 5 am each morning and head for the barn to milk three cows. The first farmer b ...
- 【图论】Popular Cows
[POJ2186]Popular Cows Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 34752 Accepted: ...
- 【poj1734】Sightseeing trip
Sightseeing trip Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 8520 Accepted: 3200 ...
随机推荐
- Windows 8.1 with Update MSDN 简体/英文/繁体
PS:请不要使用离线下载,以免镜像损坏! 1.CN: 文件名:cn_windows_8.1_enterprise_with_update_x64_dvd_4048578.isoSHA1:2D9BFE9 ...
- jQuery lazyload 懒加载
Lazy Load 是一个用 JavaScript 编写的 jQuery 插件. 它可以延迟加载长页面中的图片. 在浏览器可视区域外的图片不会被载入, 直到用户将页面滚动到它们所在的位置. 这与图片预 ...
- jQuery原生框架-----------------dom操作
// 扩展DOM操作方法jQuery.fn.extend({ // 设置或者获取元素的内容 html: function( html ) { /* * 实现思路: * 1.不传参,返回第一个元素的内容 ...
- JAVA中管道通讯(线程间通讯)例子
Java I/O系统是建立在数据流概念之上的,而在UNIX/Linux中有一个类似的概念,就是管道,它具有将一个程序的输出当作另一个程序的输入的能力.在Java中,可以使用管道流进行线程之间的通信,输 ...
- USBD_STATUS
USBD_STATUS 该USBD_STATUS数据类型为USB请求定义USB状态值. 的typedef LONG USBD_STATUS; USB状态值的最显著4位被如下表中所定义. 值 ...
- C语言程序设计第10堂作业
一.本次课主要内容: 本次课程学习数组,一种最基本的构造类型,它是一组相同类型数据的有序集合.数组中的元素在内存中连续存放,每个元素都属于同一种数据类型,用数组名和下标可以唯一地确定数组元素: (1) ...
- Java的流程控制和C++的异同
Java的流程控制和C++基本相似 现将不同的地方总结一下,以便快速掌握. Java的特殊流程控制的特殊部分: 1.顺序结构 -- 没有区别 2.分之结构 -- 没有区别 3.循环结构 1> ...
- ubuntu用下载的文件替换即可更新
./usr/lib/flashplugin-installer/libflashplayer.so 也有可能是 /usr/lib/firefox-addons/plugins
- SQL注入的分类
基于从服务器接收到的响应 基于错误的SQL注入 联合查询的类型 堆查询注射 SQL盲注 基于布尔SQL盲注 基于时间的SQL盲注 基于 ...
- shader forge卡通渲染!
自从用了shader forge,妈妈我再也不写shader了...... 写了3种,分别用的顶点法线.法线贴图.顶点法线+法线贴图,然后还有自发光和受光两种模式,那就是6种了吧... 最后来一张sh ...