【POJ3621】Sightseeing Cows
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 8331 | Accepted: 2791 |
Description
Farmer John has decided to reward his cows for their hard work by taking them on a tour of the big city! The cows must decide how best to spend their free time.
Fortunately, they have a detailed city map showing the L (2 ≤ L ≤ 1000) major landmarks (conveniently numbered 1.. L) and the P (2 ≤ P ≤ 5000) unidirectional cow paths that join them. Farmer John will drive the cows to a starting landmark of their choice, from which they will walk along the cow paths to a series of other landmarks, ending back at their starting landmark where Farmer John will pick them up and take them back to the farm. Because space in the city is at a premium, the cow paths are very narrow and so travel along each cow path is only allowed in one fixed direction.
While the cows may spend as much time as they like in the city, they do tend to get bored easily. Visiting each new landmark is fun, but walking between them takes time. The cows know the exact fun values Fi (1 ≤ Fi ≤ 1000) for each landmark i.
The cows also know about the cowpaths. Cowpath i connects landmark L1i to L2i (in the direction L1i -> L2i ) and requires time Ti (1 ≤ Ti ≤ 1000) to traverse.
In order to have the best possible day off, the cows want to maximize the average fun value per unit time of their trip. Of course, the landmarks are only fun the first time they are visited; the cows may pass through the landmark more than once, but they do not perceive its fun value again. Furthermore, Farmer John is making the cows visit at least two landmarks, so that they get some exercise during their day off.
Help the cows find the maximum fun value per unit time that they can achieve.
Input
* Line 1: Two space-separated integers: L and P
* Lines 2..L+1: Line i+1 contains a single one integer: Fi
* Lines L+2..L+P+1: Line L+i+1 describes cow path i with three space-separated integers: L1i , L2i , and Ti
Output
* Line 1: A single number given to two decimal places (do not perform explicit rounding), the maximum possible average fun per unit time, or 0 if the cows cannot plan any trip at all in accordance with the above rules.
Sample Input
5 7
30
10
10
5
10
1 2 3
2 3 2
3 4 5
3 5 2
4 5 5
5 1 3
5 2 2
Sample Output
6.00
题意:给出一个有向图 问求一个回路 使得回路上的点权之和/边权之和最大
01分数规划,简单构造,将点权转移到边权上~因为一个环上的点和边的数量是相等的~
设i,j之间初始边权为w[i][j],修改后的边权为g[i][j],则g[i][j]=w[i][j]*mid+val[i]
spfa判负环即可~
其实说起来很简单写的时候好烦。。。。因为G++%lf输出问题WA了好多次。。。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <algorithm>
#include <cmath>
using namespace std; const int maxn = ;
const int maxm = ;
int a[maxm], b[maxm];
int head[maxn], next[maxm], to[maxm];
int q[maxn*], im[maxm];
int vis[maxn];
int cnt, st;
int n, m;
double l, r, mid;
double c[maxm], dis[maxn], len[maxm], val[maxn]; inline void add(int u, int v, double w);
bool dfs(int u);
bool spfa(); int main(){
while(scanf("%d%d", &n, &m)!=EOF){
for(int i = ; i <= n; ++i){
scanf("%lf", &val[i]);
} memset(head, -, sizeof(head));
cnt = ;
for(int i = ; i <= m; ++i){
scanf("%d%d%lf", &a[i], &b[i], &c[i]);
add(a[i], b[i], c[i]);
} l = 0.0;
r = 1000.0;
while(r-l > 1e-){
mid = (r+l) / 2.0;
if(spfa()){
l = mid;
}
else{
r = mid;
}
}
printf("%.2f\n", mid);
}
return ;
} inline void add(int u, int v, double w){
to[cnt] = v;
len[cnt] = w;
next[cnt] = head[u];
head[u] = cnt++;
} bool dfs(int u){
vis[u] = st;
for(int i = head[u]; ~i; i = next[i]){
if(dis[to[i]] > dis[u] + len[i]*mid - val[u]){
dis[to[i]] = dis[u] + len[i]*mid - val[u];
if(vis[to[i]] == st){
return true;
}
else if(dfs(to[i])){
return true;
}
}
}
vis[u] = ;
return false;
} bool spfa(){
memset(vis, , sizeof(vis));
for(st = ; st <= n; ++st){
if(dfs(st)){
return true;
}
}
return false;
}
【POJ3621】Sightseeing Cows的更多相关文章
- 【POJ3621】Sightseeing Cows 分数规划
[POJ3621]Sightseeing Cows 题意:在给定的一个图上寻找一个环路,使得总欢乐值(经过的点权值之和)/ 总时间(经过的边权值之和)最大. 题解:显然是分数规划,二分答案ans,将每 ...
- 【POJ3621】【洛谷2868】Sightseeing Cows(分数规划)
[POJ3621][洛谷2868]Sightseeing Cows(分数规划) 题面 Vjudge 洛谷 大意: 在有向图图中选出一个环,使得这个环的点权\(/\)边权最大 题解 分数规划 二分答案之 ...
- 【POJ2182】Lost Cows
[POJ2182]Lost Cows 题面 vjudge 题解 从后往前做 每扫到一个点\(i\)以及比前面小的有\(a[i]\)个数 就是查询当前的第\(a[i]+1\)小 然后查询完将这个数删掉 ...
- 【2186】Popular Cows(强连通分支及其缩点)
id=2186">[2186]Popular Cows(强联通分支及其缩点) Popular Cows Time Limit: 2000MS Memory Limit: 65536 ...
- 【POJ】【1637】Sightseeing tour
网络流/最大流 愚人节快乐XD 这题是给一个混合图(既有有向边又有无向边),让你判断是否有欧拉回路…… 我们知道如果一个[连通]图中每个节点都满足[入度=出度]那么就一定有欧拉回路…… 那么每条边都可 ...
- 【洛谷P2868】Sightseeing Cows
题目大意:给定一个 N 个点,M 条边的有向图,点有点权,边有边权,求该有向图中的一个环,使得环上点权和与环上边权和之比最大. 题解:0/1 分数规划思想,每次二分一个 mid,在新图上跑 spfa, ...
- 【USACO】Milking Cows
Three farmers rise at 5 am each morning and head for the barn to milk three cows. The first farmer b ...
- 【图论】Popular Cows
[POJ2186]Popular Cows Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 34752 Accepted: ...
- 【poj1734】Sightseeing trip
Sightseeing trip Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 8520 Accepted: 3200 ...
随机推荐
- POJ 题目3661 Running(区间DP)
Running Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 5652 Accepted: 2128 Descripti ...
- CSS之过渡简单应用—日落西山
代码: <!DOCTYPE html><html><head> <title>日落西山</title> <meta charset=& ...
- jQuery原生框架中的jQuery.fn.extend和jQuery.extend
extend 方法在 jQuery 中是一个很重要的方法,jQuey 内部用它来扩展静态方法或实例方法,而且我们开发 jQuery 插件开发的时候也会用到它.但是在内部,是存在 jQuery.fn.e ...
- C语言程序设计第七次作业
一.学习内容 本次课学习了函数的基本知识,需要大家对如下知识点进行总结: 1. 函数定义的基本格式,函数定义和函数原型(声明)的区别何在? 2. 函数的调用方式有哪几种 ...
- Axis2测试webservice server以及client
一.环境搭建 下载axis2-1.6.2-war.zip/axis2-1.6.2-bin.zip等. 参考axis2-1.6.2-war\README.txt以及axis2-1.6.2-war\axi ...
- 一个Ubuntu源更新错误及解决办法
InRelease: Clearsigned file isn't valid, got 'NODATA' (does the network require authentication?) 尝试进 ...
- CGBitmapContextCreate函数参数详解
函数原型: CGContextRef CGBitmapContextCreate ( void *data, size_t width, size_t height, size_t bitsPerCo ...
- 输入两个正整数m和n,求其最大公约数和最小公倍数
public static void main(String[] args){ Scanner sc = new Scanner (System.in); int a,b; System.out ...
- ASP.NET Repeater 控件分页
protected void Page_Load(object sender, EventArgs e) { HttpContext context = HttpContext.Current; co ...
- Session Tracking Approaches
cookies url rewriting hidden field see also: http://www.informit.com/articles/article.aspx?p=29817&a ...