Sightseeing Cows
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 8331   Accepted: 2791

Description

Farmer John has decided to reward his cows for their hard work by taking them on a tour of the big city! The cows must decide how best to spend their free time.

Fortunately, they have a detailed city map showing the L (2 ≤ L ≤ 1000) major landmarks (conveniently numbered 1.. L) and the P (2 ≤ P ≤ 5000) unidirectional cow paths that join them. Farmer John will drive the cows to a starting landmark of their choice, from which they will walk along the cow paths to a series of other landmarks, ending back at their starting landmark where Farmer John will pick them up and take them back to the farm. Because space in the city is at a premium, the cow paths are very narrow and so travel along each cow path is only allowed in one fixed direction.

While the cows may spend as much time as they like in the city, they do tend to get bored easily. Visiting each new landmark is fun, but walking between them takes time. The cows know the exact fun values Fi (1 ≤ Fi ≤ 1000) for each landmark i.

The cows also know about the cowpaths. Cowpath i connects landmark L1i to L2i (in the direction L1i -> L2i ) and requires time Ti (1 ≤ Ti ≤ 1000) to traverse.

In order to have the best possible day off, the cows want to maximize the average fun value per unit time of their trip. Of course, the landmarks are only fun the first time they are visited; the cows may pass through the landmark more than once, but they do not perceive its fun value again. Furthermore, Farmer John is making the cows visit at least two landmarks, so that they get some exercise during their day off.

Help the cows find the maximum fun value per unit time that they can achieve.

Input

* Line 1: Two space-separated integers: L and P
* Lines 2..L+1: Line i+1 contains a single one integer: Fi
* Lines L+2..L+P+1: Line L+i+1 describes cow path i with three space-separated integers: L1i , L2i , and Ti

Output

* Line 1: A single number given to two decimal places (do not perform explicit rounding), the maximum possible average fun per unit time, or 0 if the cows cannot plan any trip at all in accordance with the above rules.

Sample Input

5 7
30
10
10
5
10
1 2 3
2 3 2
3 4 5
3 5 2
4 5 5
5 1 3
5 2 2

Sample Output

6.00

题意:给出一个有向图 问求一个回路 使得回路上的点权之和/边权之和最大

01分数规划,简单构造,将点权转移到边权上~因为一个环上的点和边的数量是相等的~

设i,j之间初始边权为w[i][j],修改后的边权为g[i][j],则g[i][j]=w[i][j]*mid+val[i]

spfa判负环即可~

其实说起来很简单写的时候好烦。。。。因为G++%lf输出问题WA了好多次。。。

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <algorithm>
#include <cmath>
using namespace std; const int maxn = ;
const int maxm = ;
int a[maxm], b[maxm];
int head[maxn], next[maxm], to[maxm];
int q[maxn*], im[maxm];
int vis[maxn];
int cnt, st;
int n, m;
double l, r, mid;
double c[maxm], dis[maxn], len[maxm], val[maxn]; inline void add(int u, int v, double w);
bool dfs(int u);
bool spfa(); int main(){
while(scanf("%d%d", &n, &m)!=EOF){
for(int i = ; i <= n; ++i){
scanf("%lf", &val[i]);
} memset(head, -, sizeof(head));
cnt = ;
for(int i = ; i <= m; ++i){
scanf("%d%d%lf", &a[i], &b[i], &c[i]);
add(a[i], b[i], c[i]);
} l = 0.0;
r = 1000.0;
while(r-l > 1e-){
mid = (r+l) / 2.0;
if(spfa()){
l = mid;
}
else{
r = mid;
}
}
printf("%.2f\n", mid);
}
return ;
} inline void add(int u, int v, double w){
to[cnt] = v;
len[cnt] = w;
next[cnt] = head[u];
head[u] = cnt++;
} bool dfs(int u){
vis[u] = st;
for(int i = head[u]; ~i; i = next[i]){
if(dis[to[i]] > dis[u] + len[i]*mid - val[u]){
dis[to[i]] = dis[u] + len[i]*mid - val[u];
if(vis[to[i]] == st){
return true;
}
else if(dfs(to[i])){
return true;
}
}
}
vis[u] = ;
return false;
} bool spfa(){
memset(vis, , sizeof(vis));
for(st = ; st <= n; ++st){
if(dfs(st)){
return true;
}
}
return false;
}

【POJ3621】Sightseeing Cows的更多相关文章

  1. 【POJ3621】Sightseeing Cows 分数规划

    [POJ3621]Sightseeing Cows 题意:在给定的一个图上寻找一个环路,使得总欢乐值(经过的点权值之和)/ 总时间(经过的边权值之和)最大. 题解:显然是分数规划,二分答案ans,将每 ...

  2. 【POJ3621】【洛谷2868】Sightseeing Cows(分数规划)

    [POJ3621][洛谷2868]Sightseeing Cows(分数规划) 题面 Vjudge 洛谷 大意: 在有向图图中选出一个环,使得这个环的点权\(/\)边权最大 题解 分数规划 二分答案之 ...

  3. 【POJ2182】Lost Cows

    [POJ2182]Lost Cows 题面 vjudge 题解 从后往前做 每扫到一个点\(i\)以及比前面小的有\(a[i]\)个数 就是查询当前的第\(a[i]+1\)小 然后查询完将这个数删掉 ...

  4. 【2186】Popular Cows(强连通分支及其缩点)

    id=2186">[2186]Popular Cows(强联通分支及其缩点) Popular Cows Time Limit: 2000MS   Memory Limit: 65536 ...

  5. 【POJ】【1637】Sightseeing tour

    网络流/最大流 愚人节快乐XD 这题是给一个混合图(既有有向边又有无向边),让你判断是否有欧拉回路…… 我们知道如果一个[连通]图中每个节点都满足[入度=出度]那么就一定有欧拉回路…… 那么每条边都可 ...

  6. 【洛谷P2868】Sightseeing Cows

    题目大意:给定一个 N 个点,M 条边的有向图,点有点权,边有边权,求该有向图中的一个环,使得环上点权和与环上边权和之比最大. 题解:0/1 分数规划思想,每次二分一个 mid,在新图上跑 spfa, ...

  7. 【USACO】Milking Cows

    Three farmers rise at 5 am each morning and head for the barn to milk three cows. The first farmer b ...

  8. 【图论】Popular Cows

    [POJ2186]Popular Cows Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 34752   Accepted: ...

  9. 【poj1734】Sightseeing trip

    Sightseeing trip Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8520   Accepted: 3200 ...

随机推荐

  1. 如何让Button使用自定义icon

    1.在Buttton所在的html页面定义button要使用的icon的css样式,如 </style> <style> .dijitArrowIcon { backgroun ...

  2. 使用CSS3动画属性实现360°无限循环旋转【代码片段】

    使用CSS3的animation动画属性实现360°无限循环旋转. 代码片段: <div id="test"> <img src="/CSS3/img/ ...

  3. fastcgi是什么?与php-fpm之间是什么关系?

    首先,CGI是干嘛的?CGI是为了保证web server传递过来的数据是标准格式的,方便CGI程序的编写者. web server(比如说nginx)只是内容的分发者.比如,如果请求/index.h ...

  4. http状态消息

    1-5状态码了解 1XX 表示信息(消息) 2XX 表示成功 3XX 表示重定向 4XX 表示请求错误 *** 5XX 表示服务端错误 常见状态码 200 请求成功 一切正常 301 重定向,修改后的 ...

  5. php 画图片

    <?php // 使用php操作gd库做图 // 1. 创建一个画布资源 $im = imagecreatetruecolor(80, 40); // 2. 画内容 // 2.1 先位画布准备颜 ...

  6. popen使用不当引起产生僵尸进程

    FILE * popen(const char * command, const char * type)popen函数会通过fork产生子进程,然后从子进程中调用/bin/sh -c执行参数comm ...

  7. Python里的编码问题

    马克一篇 http://bbs.chinaunix.net/archiver/tid-1163613.html http://www.openhome.cc/Gossip/Python/ImportI ...

  8. 数据结构《17》---- 自动补齐之《二》----Ternary Search Tree

    一. 序言 上一篇文章中,给出了 trie 树的一个实现.可以看到,trie 树有一个巨大的弊病,内存占用过大. 本文给出另一种数据结构来解决上述问题---- Ternary Search Tree ...

  9. KinerCode.js

    1 /*验证码*/ function KinerCode(options) { this.opt = this.extend(true, this.options, options); this.op ...

  10. 如何启动app时全屏显示Default.png(图片)?