====================================我是分割线首先介绍下网上看到的========================================================================================

一、RS232标准中的RTS与CTS

RTS,CTS------请求发送/清除发送,用于半双工时的收发切换,属于辅助流控信号。半双工的意思是说,发的时候不收,收的时候不发。那么怎么区分收发呢?缺省时是DCE向DTE发送数据,当DTE决定向DCE发数据时,先有效RTS,表示DTE希望向DCE发送。一般DCE不能马上转换收发状态,DTE就通过监测CTS是否有效来判断可否发送,这样避免了DTE在DCE未准备好时发送所导致的数据丢失。

二、MODEM硬件流控中的RTS与CTS

按照SIMCOM公司的解释,RTS和CTS是独立,

1.RTS是模块的输入端,用于MCU通知模块,MCU是否准备好,模块是否可向MCU发送信息,RTS的有效电平为低。 
2.CTS是模块的输出端,用于模块通知MCU,模块是否准备好,MCU是否可向模块发送信息,CTS的有效电平为低 
从文字看,RTS和CTS是独立的,不存在每次单向数据传输的发起者问题。如果主机输出RTS有效,那么模块有数据就会发往主机;如果模块输出CTS有效,那么主机就可以将数据送达模块接收。 
三、通信协议中的RTS与CTS

RTS/CTS协议即请求发送/允许发送协议,相当于一种握手协议,主要用来解决"隐藏终端"问题。"隐藏终端"(Hidden Stations)是指,基站A向基站B发送信息,基站C未侦测到A也向B发送,故A和C同时将信号发送至B,引起信号冲突,最终导致发送至B的信号都丢失了。"隐藏终端"多发生在大型单元中(一般在室外环境),这将带来效率损失,并且需要错误恢复机制。当需要传送大容量文件时,尤其需要杜绝"隐藏终端"现象的发生。IEEE802.11提供了如下解决方案。在参数配置中,若使用RTS/CTS协议,同时设置传送上限字节数----一旦待传送的数据大于此上限值时,即启动RTS/CTS握手协议:首先,A向B发送RTS信号,表明A要向B发送若干数据,B收到RTS后,向所有基站发出CTS信号,表明已准备就绪,A可以发送,其余基站暂时"按兵不动",然后,A向B发送数据,最后,B接收完数据后,即向所有基站广播ACK确认帧,这样,所有基站又重新可以平等侦听、竞争信道了。

附:UART串口历史

很久很久以前,计算机还没有出现,那时就已经存在了(计算机)史前的串口设备(电传打字机,工控测量设备,通信调制解调器),为了连接这些串口,EIA制定了RS232标准,采用DB25接插件,支持同步和异步串口,D型的接口可以有效防止插反。标准化给使用带来了便利。 
时光荏苒,个人计算机出现了,这些已有的串口设备毫无疑问地成为了最初的外设,自然而然地RS232标准被个人计算机采纳。但是设备制造商倾向于体积更小,成本更低的接口,因此,将DB25中未使用的和支持同步模式的引脚去掉,形成DB9。最初的情况相当混乱,因为DB9只定义了信号,却没有指定信号和引脚的对应关系,各个制造商只能自行定义。幸运的是,IBM的PC成了工业标准,DB9逐渐统一到IBM的定义上来。 
    DB9只有9根线,遵循RS232标准。定义如下: 
    DTR,DSR------DTE设备准备好/DCE设备准备好。主流控信号。 
RTS,CTS------请求发送/清除发送。用于半双工时,收发切换。属于辅助流控信号。半双工的意思是说,发的时候不收,收的时候不发。那么怎么区分收发呢?缺省时是DCE向DTE发送数据,当DTE决定向DCE发数据时,先有效RTS,表示DTE希望向DCE发送,一般DCE不能马上转换收发状态,DTE就通过监测CTS是否有效来判断可否发送,这样避免了DTE在DCE未准备好时发送所导致的数据丢失。全双工时,这两个信号一直有效即可。 
随着计算机的日益普及,很多非RS232的串口也要接入PC机,如果为每一种新出现的串口都增加一个新的I/O口显然不现实,因为PC后面板位置有限,因此,将RS232串口和非RS232串口都通过RS232口接入是最佳方案。UART的U(通用)指的就是这个意思。早期ROM BIOS和DOS里的通信软件都是为RS232设计的,在没有检测到DCD有效前不会发送数据,因此,就连发送一个字符这样朴素的应用也要给出DCD、DTR、DSR等控制信号。因此,串口接头上要将一些控制线短接,或者干脆绕过系统软件自己写通信程序。 
到此,UART的涵义就总结为:通用的 异步 (串行) I/O口。 
就在UART冠以通用二字,准备一统江湖的时候,制造商们不满于它的速度、体积和灵活性(软件可配置),推出了USB和1394串口。目前,笔记本上的UART串口有被取消的趋势,因而有网友发出了“没有串口,吾谁与归”的慨叹,古今多少事,都付笑谈中,USB取代UART是后话,暂且不表。 
话说自从贺氏(Hayes)公司推出了聪明猫(SmartModem),他们制定的MODEM接口就成了业界标准,自此以后,所有公司制造的兼容猫都符合贺氏标准(连AT指令也兼容)。 
细观贺氏制定的MODEM串口,与RS232标准大不相同。DTR在整个通信过程中一直保持有效,DSR在MODEM上电后/可以拨号前有效(取决于软件对DSR的理解),在通信过程的任意时刻,只要DTR/DSR无效,通信过程立即终止。在某种意义上,这也可以算是流控,但肯定不是RS232所指的那种主流控。如果拘泥于RS232,你是不会理解DTR和DSR的用途的。 
贺氏不但改了DTR和DSR,竟然连RTS和CTS的涵义也重新定义了。因此,RTS和CTS已经不具有最开始的意义了。从字面理解RTS和CTS,是用于半双工通信的,当DTE想从收模式改为发模式时,就有效RTS请求发送,DCE收到RTS请求后不能立即完成转换,需要一段时间,然后有效CTS通知DTE:DCE已经转到发模式,DTE可以开始发送了。在全双工时,RTS和CTS都缺省置为有效即可。然而,在贺氏的MODEM串口定义中,RTS和CTS用于硬件流控,和什么全双工/半双工一点关系也没有。 注意,硬件流控是靠软件实现的,之所以强调“硬件”二字,仅仅是因为硬件流控提供了用于流量情况指示的硬件连线,并不是说,你只要把线连上,硬件就能自己流控。如果软件不支持,光连上RTS和CTS是没有用的。 
RTS和CTS硬件流控的软件算法如下:(RTS有效表示PC机可以收,CTS有效表示MODEM可以收,这两个信号互相独立,分别指示一个方向的流量情况。) 
    PC端处理: 
     发.    当发现(不一定及时发现) CTS (-3v to -15v)无效时,停止发送, 
         当发现(不一定及时发现) CTS (3v to 15v)有效时,恢复发送; 
     收.    当接收buffers中的bytes当接收buffers中的bytes>N 时,给 RTS 无效信号(-3v to -15v); 
    MODEM端处理: 
同上,但RTS与CTS交换。

在RS232中本来CTS 与RTS 有明确的意义,但自从贺氏(HAYES) 推出了聪明猫(SmartModem)后就有点混淆了。在RS232中RTS 与CTS 是用来半双工模式下的方向切换;HAYES Modem中的RTS ,CTS 是用来进 行硬件流控的。通常UART的RTC、CTS 的含义指后者,即用来做硬流控的。

硬流控的RTS 、CTS :RTS (Require To Send,发送请求)为输出信号,用于指示本设备准备好可接收;CTS(Clear To Send,发送清除)为输入信号,有效时停止发送。假定A、B两设备通信,A设备的RTS 连接B设备的CTS ;A设备的CTS 连接B设备 的RTS 。 前一路信号控制B设备的发送,后一路信号控制A设备的发送。对B设备的发送(A设备接收)来说,如果A设备接收缓冲快满的时发出RTS 信号(意思 通知B设备停止发送),B设备通过CTS 检测到该信号,停止发送;一段时间后A设备接收缓冲有了空余,发出RTS 信号,指示B设备开始发送数据。A设备发(B设备接收) 类似。上述功能也能在数据流中插入Xoff(特殊字符)和Xon(另一个特殊字符)信号来实现。A设备一旦接收到B设备发送过来的Xoff,立刻停止发 送;反之,如接收到B设备发送过来的Xon,则恢复发送数据给B设备。同理,B设备也类似,从而实现收发双方的速度匹配。

半双工的方向切换:RS232中使用DTR(Date Terminal Ready,数据终端准备)与DSR(Data Set Ready ,数据设备准备好)进行主流控,类似上述的RTS 与CTS 。对半双工的通信的DTE(Date Terminal Equipment,数据终端设备)与DCE(Data circuit Equipment )来说,默认的方向是DTE接收,DCE发送。如果DTE要发送数据,必须发出RTS 信号,请求发送数据。DCE收到后如果 空闲则发出CTS 回 应RTS 信 号,表示响应请求,这样通信方向就变为DTE->TCE,同时RTS 与CTS 信号必须一直保持。从这里可以看出,CTS ,TRS虽 然也有点流控的意思(如CTS 没有发出,DTE也不能发送数据),但主要是用来进行方向切换的。

如果UART只有RX、TX两个信号,要流控的话只能是软流控;如果有RX,TX,CTS ,RTS 四个信号,则多半是支持硬流控的UART;如果有 RX,TX,CTS ,RTS ,DTR,DSR 六个信号的话,RS232标准的可能性比较大。

顺便提一下:

DCD( Data Carrier Detect, 数据载波检测):DCE向DTE指示,线路上检测到载波。

RI(Ring Indicator,振铃指示):DCE向DTE指示,有呼叫接入。

====================================我是分割线=====================================================================================================

  这两天基于STM32的串口做了测试。之前一直用的时候根本没有往串口协议上靠,只是能用起来解决了问题就匆匆完事。直到最近看《深入理解计算机网络》这本网络基础书,里面讲232协议以及485协议时,忽然想拿板子测试下。上面提到的CTS/RTS流控方面的应用是我之前使用串口时没有注意到的。之前在用USART做串口编程时,一般都是设备作为从机来使用,包括一些教程也都是从这样的应用来讲解。大部分的教程都是在将单片机Usart同上位机超级终端之间通过232协议转换模块进行通信。最最常见的用法就是使用串口中断进行流控(当然这种做法是推荐的,因为232的CTS/RTS不是干这个用的,本文只是那上位机的232这么测试一下。。。)

  前几天看书看到232的时候,我忽然想到是不是可以用RTS/CTS来代替中断实现上位机的交互。上位机的超级终端或者串口小助手,在接收的数据的时候,可以游刃有余,因为stm32函数库里面,usart的发送数据是通过串口打印冲定义实现的,将fputs()函数进行了修改,最终使用printf函数进行输出。这种方法其实是通过函数fputs()本身进行了缓存操作,使得USART_SendData函数能一位位的将数据发出。也就是说,即是不用发送中断,我们依然能够井然有序的通过stm32的Usart的TX端口将数据发出。如下代码是stm32函数库中串口打印冲定义函数,注意是USART1。

 #ifdef __GNUC__
/* With GCC/RAISONANCE, small printf (option LD Linker->Libraries->Small printf
set to 'Yes') calls __io_putchar() */
#define PUTCHAR_PROTOTYPE int __io_putchar(int ch)
#else
#define PUTCHAR_PROTOTYPE int fputc(int ch, FILE *f)
#endif /* __GNUC__ */ PUTCHAR_PROTOTYPE
{
/* Place your implementation of fputc here */
/* e.g. write a character to the USART */
USART_SendData(USART1,(u8)ch); /* Loop until the end of transmission */
while (USART_GetFlagStatus(USART1, USART_FLAG_TXE) == RESET); return ch;
}

  但是,如果我们不使用中断,而从上位机超级终端向stm32发送数据的话,你会发现,单片机只能收到你发的字符串的首个字符。其它的字符全部丢失。这就是没有做流控的结果。比如下面:

 int main(void)
{
u32 i=0xffffff;
SystemInit();
usart_Configuration();
//NVIC_Configuration();
while()
{
printf("Waveshare!\r\n");
while(--i);
i=0xffffff;
printf("%c",USART_ReceiveData(USART1));
}
}

  但是如果我们使用中断,或者是使用RTS/RTS做流控则不会发生这种现象。从机理上讲,上面是发生了接收溢出错误。串口状态寄存器的ORE位由于在RENE=1的情况(也就是第一个字符已经被写满数据寄存器DR)下接收到了数据,造成了数据溢出,此时SR.ORE位会置1.这点参考硬件手册,而且读取DR数据寄存器的话,仅会清除RXNE位,而不会清空数据寄存器DR。所以一直会输出S。但是如果我们发送再次发送一个字符,比如ASDF。则会发现输出字符变成了AWaveshare!道理跟之前一样,因为我们已经通过调用USART_ReceiveData()清空了RXNE,所以第一个字符A还是能读进去的,只不过当第二字字符S时又发生了前面的事情。所以,在做通信的时候必须做流控。

  使用中断做流控我们就不说了,很多。这里说一下CTS/RTS。其实这个比中断简单,因为中断我们还得配置,而且中断可以写中断服务函数,所以应用广。毕竟CTS/RTS其实是用来做流控或者半双工通信的,具体的含义不一样,这里只讲232的。以RTS为例,其含义如下:

  也就是说,Tx管脚接收到1个字符(默认8bit通信),硬件上RTS会产生一个置位,使得接收数据标志位RXNE=1.所以只要在软件里我们判断RXNE的状态,就可以实现流控。CTS道理一个样。故而代码可以如下:

 int main(void)
{
SystemInit();
USART_CTRT_Configuartion();
while(NbrOfDataToTransfer--)
{
USART_SendData(USART1,TxBuffer[TxCounter++]);
while(USART_GetFlagStatus(USART1, USART_FLAG_TXE) == RESET); //等待发送结束
} /*Receive a string (Max RxBufferSize bytes) from the Hyperterminal ended by '\r' (Enter key) */
do
{
if((USART_GetFlagStatus(USART1, USART_FLAG_RXNE) != RESET)&&(RxCounter < RxBufferSize)) //0xFF:256字符
{
RxBuffer[RxCounter] = USART_ReceiveData(USART1);
USART_SendData(USART1, RxBuffer[RxCounter++]);
} }while((RxBuffer[RxCounter - ] != '\r')&&(RxCounter != RxBufferSize)); //串口配置函数 void USART_CTRT_Configuartion(void)
{
USART_InitTypeDef USART_InitStruct; Rcc_Configuration(); USART_InitStruct.USART_BaudRate = ;
USART_InitStruct.USART_StopBits = USART_StopBits_1;
USART_InitStruct.USART_WordLength = USART_WordLength_8b;
USART_InitStruct.USART_Parity = USART_Parity_No;
USART_InitStruct.USART_HardwareFlowControl = USART_HardwareFlowControl_RTS_CTS;
USART_InitStruct.USART_Mode = USART_Mode_Tx | USART_Mode_Rx; USART_Init(USART1, &USART_InitStruct); USART_Cmd(USART1, ENABLE); UsartGPIO_CTRT_Configuration();
}

  完整的代码可以自己参考库函数。这里不再贴了。

引用参考:http://www.cnblogs.com/sunyubo/archive/2010/04/21/2282176.html

RTS与CTS的含义的更多相关文章

  1. RTS与CTS的含义【转】

    转自:http://www.cnblogs.com/sunyubo/archive/2010/04/21/2282176.html 一.RS232标准中的RTS与CTS RTS,CTS------请求 ...

  2. [tty与uart]UART中的硬件流控RTS与CTS

    转自:http://blog.csdn.net/zeroboundary/article/details/8966586 在RS232中本来CTS 与RTS 有明确的意义,但自从贺氏(HAYES ) ...

  3. RS232及RTS和CTS

    EIA RS-232-C标准 EIA RS-232-C是由美国电子工业协会EIA制定的串行通信物理接口标准.最初是远程数据通信时,为连接数据终端设备DTE(Data Terminal Equipmen ...

  4. UART中的硬件流控RTS与CTS DTR DSR DTE设备和DCE设备【转】

    中低端路由器上使用disp interface 查看相应串口状态信息,其中DCD.DTR.DSR.RTS及CTS等五个状态指示分别代表什么意思? DCD ( Data Carrier Detect 数 ...

  5. UART中的硬件流控RTS与CTS【转】

    转自:http://blog.csdn.net/zeroboundary/article/details/8966586 5/23/2013 5:13:04 PM at rock-chips insh ...

  6. [uart]UART中的硬件流控RTS与CTS

    转自:http://blog.csdn.net/zeroboundary/article/details/8966586 在RS232中本来CTS 与RTS 有明确的意义,但自从贺氏(HAYES ) ...

  7. UART中的硬件流控RTS与CTS

    最近太忙了,没时间写对Ucos-II的移植,先将工作中容易搞错的一个知识点记录下来,关于CTS与RTS的. 在RS232中本来CTS 与RTS 有明确的意义,但自从贺氏(HAYES ) 推出了聪明猫( ...

  8. [转载][来自csdn]RTS和CTS是什么意思?

    原文链接: http://blog.csdn.net/zmq5411/article/details/6280332 这篇文章看着挺好,明白易懂,顺手转过来 34RTS和CTS是什么意思? 解释一:R ...

  9. 串口硬流控原理验证RTS与CTS

    物理连接(交叉连接) 主机的RTS(输出)信号,连接到从机的CTS(输入)信号. 主机的CTS(输入)信号,连接到从机的RTS(输出)信号. 主机发送过程: 主机查询主机的CTS脚信号,此信号连接到从 ...

随机推荐

  1. ZT 螨虫知识2

    病情分析:过敏是治不好的,只能做到避免接触.指导意见:螨虫的话就不要跟狗多接触,狗的寄生虫很多,还有草地,尤其是狗经常去的地方,草地就是螨虫的传播介质.你是过敏性体质除了被免过敏性源外,还要增强体质, ...

  2. opencv单目摄像机标定(一)

    #include <string> #include <iostream> #include <cv.h> #include <highgui.h> u ...

  3. final评论II

    1.  Nice  项目:约跑软件       在此次六个发布作品中,此作品是唯一基于Androrid开发app.并且此作品创意和实用性很高的,跑步是人们日渐热爱的一个活动,用户广泛,并且在网上沟通交 ...

  4. with try catch 作用域的问题

    with({}){}和try{}catch(e){}会临时改变代码执行的作用域, var foo="abc"; with({foo:"d"}){ functio ...

  5. asp.net mvc 自定义身份验证

    1.定义身份实体对象 /// <summary> /// 网站用户实体对象 /// </summary> public class DDTPrincipal : IPrinci ...

  6. 读取xml文件报错:Invalid byte 2 of 2-byte UTF-8 sequence。

    程序读取xml文件后,系统报“Invalid byte 2 of 2-byte UTF-8 sequence”错误,如何解决呢? 1.程序解析xml的时候,出现Invalid byte 2 of 2- ...

  7. lvs + keepalived 介绍及安装

    LVS介绍 lvs 核心ipvs      Ipvs(IP Virtual Server)是整个负载均衡的基础,如果没有这个基础,故障隔离与失败切换就毫无意义了.Ipvs 具体实现是由ipvsadm ...

  8. aspx页面调用发送邮件验证码(结合前两篇)

    <%@ Page Language="C#" AutoEventWireup="true" CodeFile="Default3.aspx.cs ...

  9. NC 查询公司下所分配的组织,并存放字符串数组中

    private String[] querkFather() { String sql = "select pk_org from org_orgs start with pk_father ...

  10. Java 判断字符串第一位和最后一位,并截取

    public static void main(String[] args) { String str = "\"{\"TaxCode\":\"913 ...