aggregateByKey 这个RDD有点繁琐,整理一下使用示例,供参考

直接上代码

import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkContext, SparkConf} /**
* Created by Edward on 2016/10/27.
*/
object AggregateByKey {
def main(args: Array[String]) {
val sparkConf: SparkConf = new SparkConf().setAppName("AggregateByKey")
.setMaster("local")
val sc: SparkContext = new SparkContext(sparkConf) val data = List((1, 3), (1, 2), (1, 4), (2, 3))
var rdd = sc.parallelize(data,2)//数据拆分成两个分区 //合并在不同partition中的值,a,b的数据类型为zeroValue的数据类型
def comb(a: String, b: String): String = {
println("comb: " + a + "\t " + b)
a + b
}
//合并在同一个partition中的值, a的数据类型为zeroValue的数据类型,b的数据类型为原value的数据类型
def seq(a: String, b: Int): String = {
println("seq: " + a + "\t " + b)
a + b
} rdd.foreach(println)

//zeroValue 中立值,定义返回value的类型,并参与运算
//seqOp 用来在一个partition中合并值的
//comb 用来在不同partition中合并值的
val aggregateByKeyRDD: RDD[(Int, String)] = rdd.aggregateByKey("100")(seq,comb) //打印输出
aggregateByKeyRDD.foreach(println) sc.stop()
}
}

输出结果说明:

 /*
将数据拆分成两个分区 //分区一数据
(1,3)
(1,2)
//分区二数据
(1,4)
(2,3) //分区一相同key的数据进行合并
seq: 100 3 //(1,3)开始和中立值进行合并 合并结果为 1003
seq: 1003 2 //(1,2)再次合并 结果为 10032 //分区二相同key的数据进行合并
seq: 100 4 //(1,4) 开始和中立值进行合并 1004
seq: 100 3 //(2,3) 开始和中立值进行合并 1003 将两个分区的结果进行合并
//key为2的,只在一个分区存在,不需要合并 (2,1003)
(2,1003) //key为1的, 在两个分区存在,并且数据类型一致,合并
comb: 10032 1004
(1,100321004) * */

参考代码及下面的说明进行理解

官网的说明

aggregateByKey(zeroValue)(seqOpcombOp, [numTasks]) When called on a dataset of (K, V) pairs, returns a dataset of (K, U) pairs where the values for each key are aggregated using the given combine functions and a neutral "zero" value. Allows an aggregated value type that is different than the input value type, while avoiding unnecessary allocations. Like in groupByKey, the number of reduce tasks is configurable through an optional second argument.

源码中函数的说明

/**
* Aggregate the values of each key, using given combine functions and a neutral "zero value".
* This function can return a different result type, U, than the type of the values in this RDD,
* V. Thus, we need one operation for merging a V into a U and one operation for merging two U's,
* as in scala.TraversableOnce. The former operation is used for merging values within a
* partition, and the latter is used for merging values between partitions. To avoid memory
* allocation, both of these functions are allowed to modify and return their first argument
* instead of creating a new U.
*/

Spark RDD aggregateByKey的更多相关文章

  1. Spark RDD 操作

    1. Spark RDD 创建操作 1.1 数据集合   parallelize 可以创建一个能够并行操作的RDD.其函数定义如下: ) scala> sc.defaultParallelism ...

  2. Spark RDD Transformation 简单用例(二)

    aggregateByKey(zeroValue)(seqOp, combOp, [numTasks]) aggregateByKey(zeroValue)(seqOp, combOp, [numTa ...

  3. Spark RDD Transformation 简单用例(一)

    map(func) /** * Return a new RDD by applying a function to all elements of this RDD. */ def map[U: C ...

  4. spark RDD官网RDD编程指南

    http://spark.apache.org/docs/latest/rdd-programming-guide.html#using-the-shell Overview(概述) 在较高的层次上, ...

  5. spark学习13(spark RDD)

    RDD及其特点 1)RDD(Resillient Distributed Dataset)弹性分布式数据集,是spark提供的核心抽象.它代表一个不可变.可分区.里面的元素可并行计算的集合 2)RDD ...

  6. Spark RDD :Spark API--Spark RDD

    一.RDD的概述 1.1 什么是RDD? RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变.可分区.里面的元素 ...

  7. Spark RDD 算子总结

    Spark算子总结 算子分类 Transformation(转换) 转换算子 含义 map(func) 返回一个新的RDD,该RDD由每一个输入元素经过func函数转换后组成 filter(func) ...

  8. Spark—RDD编程常用转换算子代码实例

    Spark-RDD编程常用转换算子代码实例 Spark rdd 常用 Transformation 实例: 1.def map[U: ClassTag](f: T => U): RDD[U]  ...

  9. Spark Rdd coalesce()方法和repartition()方法

    在Spark的Rdd中,Rdd是分区的. 有时候需要重新设置Rdd的分区数量,比如Rdd的分区中,Rdd分区比较多,但是每个Rdd的数据量比较小,需要设置一个比较合理的分区.或者需要把Rdd的分区数量 ...

随机推荐

  1. oozie调用shell

    <!-- Licensed to the Apache Software Foundation (ASF) under one or more contributor license agree ...

  2. clientTop、offsetTop和scrollTop的区分

    页可见区域宽: document.body.clientWidth; 网页可见区域高: document.body.clientHeight; 网页可见区域宽: document.body.offse ...

  3. javascript arguments解释,实现可变长参数。

    在C#中,有可变长参数params[],但是在js中,如何实现这种可变参数呢? 一.可变长参数 arguments是非常好的解决方法,一直不知道javascript有这个东西. 先来看看应用场景,使用 ...

  4. Python小知识

    列表解析 from random import randint data =[randint(-10,10) for _ in range(10)] 1.[x for x in data if x & ...

  5. SIGABRT的可能原因

    常见原因: 第三方库如glic检测到内部错误或者破坏约束条件 3种可能1.double free/free 没有初始化的地址或者错误的地址2.堆越界3.assert

  6. 关于iOS开发证书的一些总结(很有用)

    今天出了个问题,具体是这样的,我把本地的钥匙传里面的各种东西全部清空了,结果出现了各种不可预料到问题.花了一下午的时间反复的测试,终于把证书的一些问题理顺,然后在这里做一些总结. 先看张图片: 其中, ...

  7. caffe源码阅读(一)convert_imageset.cpp注释

    PS:本系列为本人初步学习caffe所记,由于理解尚浅,其中多有不足之处和错误之处,有待改正. 一.实现方法 首先,将文件名与它对应的标签用 std::pair 存储起来,其中first存储文件名,s ...

  8. maven更新远程仓库速度太慢解决方法

    1.maven在更新下载jar包的时候,因为jar包默认是从国外服务器上下载的,所以速度特别慢 2.通过设置镜像的方法加快jar包下载 3.在maven安装目录下,/config/settings.x ...

  9. How to Programmatically Impersonate Users in SharePoint

      Sometimes when creating SharePoint web or console applications, you may need to execute specific c ...

  10. Java 实现多线程的两种方式

    1:继承Therad类2:实现Runnable 接口 1.继承Thread类实现多线程继承Thread类的方法尽管被我列为一种多线程实现方式,但Thread本质上也是实现了Runnable接口的一个实 ...