P2233 [HNOI2002]公交车路线

题目背景

在长沙城新建的环城公路上一共有8个公交站,分别为A、B、C、D、E、F、G、H。公共汽车只能够在相邻的两个公交站之间运行,因此你从某一个公交站到另外一个公交站往往要换几次车,例如从公交站A到公交站D,你就至少需要换3次车。

Tiger的方向感极其糟糕,我们知道从公交站A到公交E只需要换4次车就可以到达,可是tiger却总共换了n次车,注意tiger一旦到达公交站E,他不会愚蠢到再去换车。现在希望你计算一下tiger有多少种可能的乘车方案。

题目描述

输入输出格式

输入格式:

输入文件由bus.in读入,输入文件当中仅有一个正整数n(4<=n<=10000000),表示tiger从公交车站A到公交车站E共换了n次车。

输出格式:

输出到文件bus.out。输出文件仅有一个正整数,由于方案数很大,请输出方案数除以 1000后的余数。

输入输出样例

输入样例#1:

6
输出样例#1:

8

说明

8条路线分别是:

(A→B→C→D→C→D→E),(A→B→C→B→C→D→E),

(A→B→A→B→C→D→E),(A→H→A→B→C→D→E),

(A→H→G→F→G→F→E),(A→H→G→H→G→F→E),

(A→H→A→H→G→F→E),(A→B→A→H→G→F→E)。

矩阵快速幂。

把这个题看做一个图,存到邻接矩阵里。

设GK[i][j]表示从i走到j有路径长度为k的路径条数。G1就是邻接矩阵

转移:G2k[i][j] = Σ(Gk[i][k] * Gk[k][j])

不难发现Gk = G1^k

至于快速幂,把原来的快速幂直接改过来就可以了

洛谷辣鸡分类!这是第三道分类里说是线段树结果没法用线段树做的题了!

 #include <bits/stdc++.h>
const int INF = 0x3f3f3f3f;
const int MOD = ;
inline void read(int &x){
x = ;char ch = getchar();char c = ch;
while(ch > '' || ch < '')c = ch, ch = getchar();
while(ch <= '' && ch >= '')x = x * + ch - '',ch = getchar();
if(c == '-')x = -x;
} long long tmp[][];
long long a[][],b[][]; void mul(long long a[][], long long b[][], long long c[][]){
memset(tmp, , sizeof(tmp));
for(int k = ;k <= ;k ++)
{
for(int i = ;i <= ;i ++)
{
for(int j = ;j <= ;j ++)
{
tmp[i][j] = (tmp[i][j] + a[i][k] * b[k][j]) % MOD;
}
}
}
for(int i = ;i <= ;i ++)
{
for(int j = ;j <= ;j ++)
{
c[i][j] = tmp[i][j] % MOD;
}
}
} void pow(int n)
{
for(int i = ;i <= ;i ++)b[i][i] = ;
mul(b, a, b);
while(n)
{
if(n & )mul(a, b, a);
mul(b, b, b);
n >>= ;
}
}
int nn;
int main(){
read(nn);
for(int i = ;i <= ;i ++)a[i][i + ] = a[i + ][i] = ;
a[][] = a[][] = ;
a[][] = a[][] = ;
pow(nn - );
printf("%d", a[][] % MOD);
return ;
}

【模板】矩阵快速幂 洛谷P2233 [HNOI2002]公交车路线的更多相关文章

  1. 洛谷 P2233 [HNOI2002]公交车路线 解题报告

    P2233 [HNOI2002]公交车路线 题目背景 在长沙城新建的环城公路上一共有8个公交站,分别为A.B.C.D.E.F.G.H.公共汽车只能够在相邻的两个公交站之间运行,因此你从某一个公交站到另 ...

  2. 3990 [模板]矩阵快速幂 洛谷luogu

    题目背景 矩阵快速幂 题目描述 给定n*n的矩阵A,求A^k 输入输出格式 输入格式: 第一行,n,k 第2至n+1行,每行n个数,第i+1行第j个数表示矩阵第i行第j列的元素 输出格式: 输出A^k ...

  3. 洛谷 2233 [HNOI2002]公交车路线

    题目戳这里 一句话题意 一个大小为8的环,求从1到5正好n步的方案数(途中不能经过5). Solution 巨说这个题目很水 应该是比较容易的DP,直接从把左边和右边的方案数加起来即可,但是有几个需要 ...

  4. ACM-ICPC 2018 焦作赛区网络预赛- L:Poor God Water(BM模板/矩阵快速幂)

    God Water likes to eat meat, fish and chocolate very much, but unfortunately, the doctor tells him t ...

  5. 洛谷 P2233 [HNOI]公交车线路

    洛谷 不知道大家做没做过传球游戏,这一题和传球游戏的转移方程几乎一样. 令\(A\)为\(1\)点,\(E\)为\(5\)点,那么\(f[i][j]\)代表第i步走到j的方案数. \[f[i][j]= ...

  6. P2233 [HNOI2002]公交车路线

    洛咕原题 dp->矩阵乘法 首先我们可以得出一个状态转移方程 f[i][j]=f[i-1][j-1]+f[i-1][j+1] 蓝后发现,我们可以把这转化为一个8*8的转移矩阵 然后跑一遍矩阵快速 ...

  7. 【洛谷 p3390】模板-矩阵快速幂(数论)

    题目:给定n*n的矩阵A,求A^k. 解法:利用矩阵乘法的定义和快速幂解答.注意用负数,但是数据太弱没有卡到我......(P.S.不要在 typedef long long  LL; 前使用 LL. ...

  8. 模板【洛谷P3390】 【模板】矩阵快速幂

    P3390 [模板]矩阵快速幂 题目描述 给定n*n的矩阵A,求A^k 矩阵A的大小为n×m,B的大小为n×k,设C=A×B 则\(C_{i,j}=\sum\limits_{k=1}^{n}A_{i, ...

  9. 洛谷P1939【模板】矩阵加速(数列)+矩阵快速幂

    思路: 这个 a[1]=a[2]=a[3]=1 a[x]=a[x-3]+a[x-1] (x>3) 可以想成: [a(n) ] [1 0 1] [a(n-1)   ] [a(n-1) ] =    ...

随机推荐

  1. Mysql 1864 主从错误解决方法

    故障描述: 在mysql 主库上增加了一个主键操作,没过5分钟就接受到zabbix报警mysql主从同步异常停止信息,一首凉凉送给自己.... 查看现在主从状态 (root@192.168.1.2) ...

  2. UICollectionView入门--使用系统UICollectionViewFlowLayout布局类

    原创作品,允许转载,转载时请务必以超链接形式标明文章 原始出处 .作者信息和本声明.否则将追究法律责任.http://rainbownight.blog.51cto.com/1336585/13237 ...

  3. SQLServer中使用索引视图

    在SQL Server中,视图是一个保存的T-SQL查询.视图定义由SQL Server保存,以便它能够用作一个虚拟表来简化查询,并给基表增加另一层安全.但是,它并不占用数据库的任何空间.实际上,在你 ...

  4. 为WCF增加UDP绑定(储备篇)

    日前我开发的服装DRP需要用到即时通信方面的技术,比如当下级店铺开出零售单时上级机构能实时收到XX店铺XX时XX分卖出XX款衣服X件之类的信息,当然在上级发货时,店铺里也能收到已经发货的提醒.即时通信 ...

  5. Java-JPA:JPA

    ylbtech-Java-JPA:JPA JPA是Java Persistence API的简称,中文名Java持久层API,是JDK 5.0注解或XML描述对象-关系表的映射关系,并将运行期的实体对 ...

  6. C语言实现 计算个人所得税务2种方法

    #include <stdio.h> #include <stdlib.h> /* 基于C语言的个人所得税计税系统 问题描述: 我国现行的个人所得税计算方法如下: 级数 全月应 ...

  7. python基础-基础知识考试_day5 (包括:函数_递归等知识)

    老男孩 Python 基础知识练习(三) 1.列举布尔值为 False 的值空,None,0, False, '', [], {}, () 2.写函数:根据范围获取其中 3 和 7 整除的所有数的和, ...

  8. 一行神奇的 javascript 代码

    写本篇文章的缘由是之前群里@墨尘发了一段js代码,如下: (!(~+[])+{})[--[~+""][+[]]*[~+[]] + ~~!+[]]+({}+[])[[~!+[]]*~ ...

  9. PAT甲级——A1104 Sum of Number Segments

    Given a sequence of positive numbers, a segment is defined to be a consecutive subsequence. For exam ...

  10. Mybatis的插件 PageHelper 分页查询使用方法

    参考:https://blog.csdn.net/ckc_666/article/details/79257028 Mybatis的一个插件,PageHelper,非常方便mybatis分页查询,国内 ...