传送门

解题思路

第一问比较简单,设$f[i]​$表示扔了$i​$次正面向上的硬币的期望,那么有转移方程 : $f[i]=f[i]*(1-p)+f[i-1]*p+1​$,意思就是$i​$次正面向上可以由$i-1​$次扔一个正面或者$i​$次扔一个背面得到,化简后可得 : $f[i]=f[i-1]+1/p​$。

第二问就比较玄学了,设$g[i]$表示扔了$i$次正面向上花费的期望,那么考虑如果第$i$次到正面,其实次数等于$f[i-1]+1$,如果扔到背面,次数等于$f[i]+1$。所以转移方程:$g[i]=p*(g[i-1]+2*(f[i-1]+1)-1)+(1-p)*(g[i]+2*(f[i]+1)-1)$,化简后可得:$g[i]=g[i-1]+2*f[i-1]-2*f[i]+(1+2*f[i])/p$。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm> using namespace std;
const int MAXN = ; int k;
double p,f[MAXN],g[MAXN]; int main(){
while(~scanf("%d",&k)){if(!k) break;
scanf("%lf",&p);
f[]=0.0;g[]=0.0;
for(int i=;i<=k;i++) f[i]=f[i-]+1.0/p;
for(int i=;i<=k;i++)
g[i]=g[i-]+*f[i-]-*f[i]+(+*f[i])/p;
printf("%.3lf %.3lf\n",f[k],g[k]);
}
return ;
}

poj 3682 King Arthur's Birthday Celebration (期望dp)的更多相关文章

  1. [POJ3682]King Arthur's Birthday Celebration[期望DP]

    也许更好的阅读体验 \(\mathcal{Description}\) 每天抛一个硬币,硬币正面朝上的几率是p,直到抛出k次正面为止结束,第\(i\)天抛硬币的花费为\(2i-1\),求出抛硬币的天数 ...

  2. poj-3682 King Arthur's Birthday Celebration

    C - King Arthur's Birthday Celebration POJ - 3682 King Arthur is an narcissist who intends to spare ...

  3. POJ3682 King Arthur's Birthday Celebration

    King Arthur is an narcissist who intends to spare no coins to celebrate his coming K-th birthday. Th ...

  4. 【概率论】【POJ 3682】【King Arthur's Birthday Celebration】

    题意:进行翻硬币实验,若k次向上则结束,进行第n次实验需花费2*n-1的费用,询问期望结束次数及期望结束费用 设F[i]为第i次结束时的概率 F[i]=  c(i-1,k-1)*p^k*(1-p)^( ...

  5. POJ3682;King Arthur's Birthday Celebration(期望)

    传送门 题意 进行翻硬币实验,若k次向上则结束,进行第n次实验需花费2*n-1的费用,询问期望结束次数及期望结束费用 分析 我们令f[i]为结束概率 \[f[i]=C_{i-1}^{k-1}*p^k* ...

  6. King Arthur's Birthday Celebration

    每天抛一个硬币,硬币正面朝上的几率是p,直到抛出k次正面为止结束,第一天抛硬币需花费1,第二天花费3,然后是5,7,9……以此类推,让我们求出抛硬币的天数的期望和花费的期望. 天数期望: A.投出了k ...

  7. POJ3682King Arthur's Birthday Celebration(数学期望||概率DP)

    King Arthur is an narcissist who intends to spare no coins to celebrate his coming K-th birthday. Th ...

  8. hdu4337 King Arthur's Knights

    King Arthur's Knights Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Other ...

  9. poj 2096 , zoj 3329 , hdu 4035 —— 期望DP

    题目:http://poj.org/problem?id=2096 题目好长...意思就是每次出现 x 和 y,问期望几次 x 集齐 n 种,y 集齐 s 种: 所以设 f[i][j] 表示已经有几种 ...

随机推荐

  1. C不同变量类型存储大小引发的BUG

    #include"stdio.h" typedef signed char int8; typedef unsigned char uint8; typedef signed sh ...

  2. Apsara Clouder基础技能认证:阿里巴巴编码规范 考试备考题库

    考试网址: https://edu.aliyun.com/clouder/exam/intro/33 共50道题 限时90分钟 阿里云大学Apsara Clouder基础技能认证——阿里巴巴编码规范认 ...

  3. Django 分页器模板

    返回链接: djang ORM 分页器模板: class Pagination(object): def __init__(self,current_page,all_count,per_page_n ...

  4. caffe安装 总结

    用的是matlab2018a,搞了一天 ubuntu 系统下的Caffe环境搭建 https://blog.csdn.net/hjimce/article/details/48781693 caffe ...

  5. BCZM : 1.8

    问题:      所有的员工均在1楼进电梯的时候,选择所要到达的楼层.然后计算出停靠的楼层i,当到达楼层i的时候,电梯停止.所有人走出电梯,步行到所在的楼层中.求所有人爬的楼层数目和的最小值. 解法一 ...

  6. CF698F Coprime Permutation

    题意:求有多少种符合要求的排列满足对于所有i,j,当gcd(i,j)=1时,gcd(pi,pj)=1. 排列上的一些位置给出. 标程: #include<bits/stdc++.h> us ...

  7. redis笔记_源码_简单动态字符串SDS

    参照:https://zcheng.ren/sourcecodeanalysis/theannotatedredissourcesds/#sds%E5%B0%8F%E7%BB%93 这里用char b ...

  8. mysql查询语句对于为null和为空字符串给出特定值处理

    SELECT if(IFNULL(filedName,"指定字符串")="","指定字符串",filedName) '重命名的字符名' FR ...

  9. nginx的配置:目的是使用nginx反向代理后,应用程序获取用户真实ip

    一.了解nginx Nginx是lgor Sysoev为俄罗斯访问量第二的rambler.ru站点设计开发的.从2004年发布至今,凭借开源的力量,已经接近成熟与完善. Nginx功能丰富,可作为HT ...

  10. Delphi定时模拟键盘按键例程

    delphi模拟键盘按键实例delphi模拟键盘按键实例,只是模拟一个按键的例子而已.到一定时间按下模拟按下一个按键,delphi7编译通过. 10秒点击一下H键,其他键你们去找数值替换吧,网上大把的 ...